系所組別：電腦與通信工程研究所丙組
考試科目：電磁數學
※ 考生請注意：本試題不可使用計算機

1．(15%) Find a suitable integration factor $\sigma(x)$ or $\sigma(y)$ ，and use it to find the general solution of the differential equation

$$
d x+\left(3 x-e^{-2 y}\right) d y=0
$$

2．(15%) Solve the following differential equation

$$
y^{\prime \prime}-\left(x^{2}+1\right) y=0 \text { with } y(0)=0 \text { and } y^{\prime}(0)=1
$$

3．(20%) Consider a particle of mass m ，carrying an electrical charge q ，and moving in a uniform magnetic field of strength B ．The field is in the positive z direction．The equations of motion of the particle are

$$
\begin{aligned}
& m x^{\prime \prime}=q B y^{\prime} \\
& m y^{\prime \prime}=-q B x^{\prime} \\
& m z^{\prime \prime}=0
\end{aligned}
$$

where $x(t), y(t), z(t)$ are x, y, z displacements as a function of the time t ．Find the general solution for $x(t), y(t), z(t)$ ．

4．（25\％）Mark each of the following statements True（T）or False（F）．
（a）If A and B are two $n \times n$ non－invertible matrices，then $A B$ is also non－invertible．
（b）If a square matrix A is not invertible，then $A+I$ is invertible，where I is the identity matrix of the same size as A ．
（c）Let W be a subspace of an inner product space V ，and W^{\perp} be the orthogonal complement of W ．In general，we have $W \cup W^{\perp}=V$ ．
（d）We can transform any linear independent set of non－zero vectors into an orthogonal set of vectors by the Gram－Schmidt process．
（e）Let T be a linear transformation from a vector space V to a vector space W ．Define a transformation $S: \mathbf{v} \rightarrow T(\mathbf{v})+\mathbf{w}_{o}$ from V to W ，where \mathbf{w}_{o} is a constant vector in W ． Then S is also a linear transformation from V to W ．

5．Suppose that A is a 6×4 real matrix of rank 4．Let $W=A^{T} A$ and $S=A A^{T}$ ．
（a）（ 10% ）Find the ranks of W and S ，respectively．
（b）（5\％）Explain why $\lambda=0$ is an eigenvalue of S ．
（c）（ 10% ）What is the（algebraic）multiplicity of the eigenvalue $\lambda=0$ of S ？

