系所組別：電機工程學系甲乙丁戊組，電腦與通信工程研究所丙丁組，電機資訊學院－微電奈米聯招

※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．Fig． 1 shows a circuit that performs the high－pass transfer function．
（1）Derive the transfer function of this circuit and identify its high－frequency gain and 3－dB frequency．（4\％）
（2）Determine the values of R_{t}, R_{2} ，and C to obtain a high－frequency input resistance of $10 \mathrm{k} \Omega$ ，a high－frequency gain of 40 dB ，and a $3-\mathrm{dB}$ frequency of 1000 Hz ．（6\％）
（3）At what frequency does the magnitude of the transfer function reduce to unity？（4\％）

Fig． 1

2．It is required to design the active－loaded differential MOS amplifier of Fig． 2 to obtain a differential gain of $50 \mathrm{~V} / \mathrm{V}$ ．The technology available provides $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=$ $4 \mu_{\mathrm{P}} \mathrm{C}_{0 \mathrm{x}}=400 \mu \mathrm{~A} / \mathrm{V}^{2},\left|\mathrm{~V}_{\mathrm{t}}\right|=0.5 \mathrm{~V}$ ，and $\left|\mathrm{V}_{\mathrm{A}}{ }^{\prime}\right|=20 \mathrm{~V} / \mu \mathrm{m}$（channel length modulation effect）and $V_{D D}=V_{S S}=1 \mathrm{~V}$ ．Use a bias current $\mathrm{I}=200 \mu \mathrm{~A}$ and operate all devices at $\left|\mathrm{V}_{\mathrm{ov}}\right|=0.2 \mathrm{~V}$（overdrive voltage）．
（1）Find the W / L ratios of the four transistors $\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}\right.$ ，and $\left.\mathrm{Q}_{4}\right)$ ．（4\％）
（2）Specify the channel length required of all transistors．（4\％）
（3）If I is delivered by a simple NMOS current source operated at the same V_{OV} ， for $\mathrm{V}_{\mathrm{CM}}=0$ ，what is the allowable range of v_{0} ？（4\％）

系所組別：電機工程學系甲乙丁戊組，電腦與通信工程研究所丙丁組，電機資訊學院－微電奈米聯招
※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

Fig． 2

3．The open－loop gain of an amplifier has break frequencies at $f_{p 1}=100 \mathrm{kHz}, \mathrm{f}_{\mathrm{p} 2}=200$ kHz ，and $\mathrm{f}_{\mathrm{p} 3}=1 \mathrm{MHz}$ ．The low－frequency（or DC ）gain is $\mathrm{A}_{0}=800$ ，and the feedback factor is $\beta=0.5$ ．Please calculate
（1）The gain crossover frequency．（4\％）
（2）The phase margin．（4\％）

4．An amplifier with open－loop voltage gain of 10^{4} and poles at $10^{3} \mathrm{~Hz}, 10^{5} \mathrm{~Hz}$ ，and $10^{6} \mathrm{~Hz}$ is to be compensated by the addition of a dominant pole to operate stably with a closed－loop gain of 30 dB with a 45° phase margin，what new pole frequency should be used？（6\％）
※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

5．（1）A second－order filter has the transfer function

$$
\mathrm{T}(\mathrm{~S})=\frac{1}{S^{2}+(10+\alpha) S+25}
$$

Find the range of α for which the filter can operate stably？（4\％）
（2）What type of this filter can be realized as the following transfer function？
Explain why？（8\％）

$$
\mathrm{T}(\mathrm{~S})=\frac{S\left(S^{2}+0.01\right)\left(S^{2}+4\right)}{\left(S^{2}+0.8 S+0.52\right)\left(S^{2}+0.56 S+0.18\right)\left(S^{2}+0.56 S+0.86\right)}
$$

6．A waveform generator circuit is shown in Fig．6．If the op amps have saturation voltages of $\pm 10 \mathrm{~V}$ ，given $\mathrm{C}=0.01 \mathrm{~m} \mathrm{~F}, \mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{2}=20 \mathrm{k} \Omega$ ，and $\mathrm{R}=50 \mathrm{k}$ Ω ．
（1）Sketch and label the waveforms v_{1} and v_{2} ．（10\％）
（2）Determine the frequency of waveform v_{1} ．(5%)

Fig． 6

7．Consider the circuit shown in Fig． 7 with parameters of $v_{I}=5 \times \sin (\omega t)$ volts where $\omega=2000 \pi$ radians $/ \mathrm{sec}, \mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}$ and uncharged initially，the cut－in voltage of both diodes V_{γ} while the forward diode resistance $r_{f}=0 \Omega$ ，reverse breakdown voltage $=100 \mathrm{~V}$ ，saturation current $=2.5 \times 10^{-9} \mathrm{~A}$ ．

系所組別：：電機工程學系甲乙丁戊組，電腦與通信工程研究所丙丁組，電機資訊學院－微電奈来聯招考試科目：電子學
※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
（1）What are the maximum and minimum voltage of v_{o} when $V_{r}=0$ for Fig．7（a）？ （4\％）
（2）Assume $V_{\gamma}=0$ for Fig．7（a）．Sketch waveforms of $v_{C 1}$ and v_{O} along with v_{I} starting from $t=0 \mathrm{sec}$ to $3 \mathrm{ms}$. （ 10% ）
（3）Assume $V_{\gamma}=0.7 \mathrm{~V}$ for Fig．7（b）．What are the maximum and minimum voltage of v_{o} ？（4\％）

（a）

（b）
Fig． 7

系所組別：電機工程學系甲乙丁戊組，電腦與通信工程研究所丙丁組，電機資訊學院－微電奈米䋅招
※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

8．Consider the circuit shown in Fig． 8 with parameters of $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=40 \mu$ $\mathrm{A} / \mathrm{V}^{2}$ ，and $\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=20 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=\mid \mathrm{V}_{\mathrm{tp}}=1 \mathrm{~V}, \quad(\mathrm{~W} / \mathrm{L})_{\mathrm{Q} 1}=(\mathrm{W} / \mathrm{L})_{\mathrm{Q} 3}=2 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ ， $(\mathrm{W} / \mathrm{L})_{\mathrm{Q} 2}=(\mathrm{W} / \mathrm{L})_{\mathrm{Q} 4}=4 \times(\mathrm{W} / \mathrm{L})_{\mathrm{Q} 1},(\mathrm{~W} / \mathrm{L})_{\mathrm{Q} 5}=(\mathrm{W} / \mathrm{L})_{\mathrm{Q} 6}=(\mathrm{W} / \mathrm{L})_{\mathrm{Q} 7}=(\mathrm{W} / \mathrm{L})_{\mathrm{Q} 8}$.
Note that B and \bar{B} are outputs while Set，Reset，and $C l k$ are inputs．$C l k$ is the clock signal． Set and Reset are complementary signals，i．e．，when $\operatorname{Set}=\mathrm{V}_{\mathrm{DD}}$ ，Reset $=0$ ；vice versa．
（1）Determine the minimum W／L for both Q_{5} and Q_{6} required to ensure that the two back－to－back inverters of the circuit will switch at half of $V_{D D}$ when inputs Set and Clk are V_{DD} ． 7% ）
（2）Find the minimum W／L for both Q_{5} and Q_{6} such that switching is achieved when inputs Set and Clk are half of $\mathrm{V}_{\mathrm{DD}}(8 \%)$

Fig． 8

