※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．（30\％）The jointly continuous random variables X and Y have a joint probability density func－ tion（pdf）that is uniform over the triangle with vertices at $(0,0),(0,2)$ ，and $(2,0)$ ．Answer the following questions．
（a）Find the marginal pdf of X ．
（b）Find the conditional pdf of X given Y ．
（c）What is the distribution of X when conditioned on a given $Y=y$（with $0<y<2$ ）．
（d）Find $P(0.5 \leq X \leq 2 \mid Y=0.5)$ ．
（e）Find the conditional expectation $E[X \mid Y=y]$ where $0<y<2$ ．
（f）Find the expectation $E[X]$ ．
2．（ 10% ）The pair of jointly distributed random variables (X, Y) takes on the values $(1,1),(1,-1)$ ， $(-1,-1)$ ，and $(-1,1)$ ，each with probability $1 / 4$ ．Determine if X and Y are uncorrelated．Are X and Y independent？Justify your answers．

3．（10\％）Let a and b be real numbers．For jointly distributed random variables X and Y ，prove that

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
$$

where $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$ denote，respectively，the variance of X and that of Y ，and $\operatorname{Cov}(X, Y)$ denotes the covariance of X and Y ．

Note：The statement is a general result that is valid to both discrete and continuous random variables．

4．（25\％）Mark each of the following statements True（T）or False（F）．（Need not to give reasons．）
（a）For a $n \times n$ matrix A ，if all the eigenvalues of A are non－zero，then the rank of A is n ．
（b）For a square matrix A ，if all the eigenvalues of A are zero，then the rank of A is 0 ．
（c）If both A and B are invertible $n \times n$ matrices，then $A+B$ is also an invertible matrix．
（d）Let T be a linear transformation from the vector space V to the vector space W ．Then $c T$ is also a linear transformation from V to W ，where c is a constant scalar．
（e）Suppose that A and B are two $n \times n$ matrices．The matrix $A B$ is invertible if and only if both A and B are invertible．

5．(10%) Suppose that a matrix A satisfies $A^{2}=A$ ．Show the eigenvalues of A are either 1 or 0 ．
6．(15%) Suppose that we want to define an inner product in \mathbb{C}^{n} as

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{y}^{H} A \mathbf{x}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}
$$

where $\mathbf{y}^{H}=\left(\mathbf{y}^{T}\right)^{*}$ is the conjugate of \mathbf{y}^{T} ．Explain why A must be positive－definite．（ \mathbb{C} denotes the set of all complex numbers．）

