系所組別：電腦與通信工程研究所乙組

考試科目：通信數學
考試日期：0211，節次：3
第／頁，共2頁
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．（ 15% ）Suppose that you randomly select a number from an open interval between 0 and 1 ，i．e．， the interval $(0,1)$ ．Let the number selected be denoted as X ．
（a）Is X a discrete random variable（RV）or a continuous RV？Justify your answer．
（b）What is the probability that the number selected is 0.5 ？Justify your answer．
（c）Use three different ways（in a mathematical language）to describe the distribution of X ．
2．（ 10% ）Consider a RV X whose expected value and variance exist．You are asked to find a constant c such that it best represents X in the sense that c minimizes the mean square error （MSE），where the MSE is defined as $E\left[(\dot{X}-c)^{2}\right]$ where $E[\cdot]$ represents the expectation．
（a）Find c ．
（b）［continued from part（a）］Find the minimum value of the MSE．
3．(10%) The jointly continuous random variables X and Y have a joint probability density func－ tion（pdf）that is uniform over the region defined by $\{(x, y)|0<x<1,|y|<x\}$ ．
（a）Determine the conditional pdf $f_{X \mid Y}(x \mid y)$ ．
（b）Find the conditional expectation $E[X \mid Y=y]$ for $|y|<1$ ．
4．（ 15% ）The RV Z is a Gaussian RV；its mean and variance are denoted as m and σ^{2} ，respectively． Let $X=|Z-m|$ ．Find the variance of X ．

5．（20\％）Mark each of the following statements True（T）or False（F）．（Need not to give reasons．）
（a）For a square matrix M ，if the columns of M are linearly independent，then the rows of M are also linearly independent．
（b）For a square matrix M ，if the columns of M form an orthonormal set，then the rows of M also form an orthonormal set．
（c）For an $m \times n$ matrix A ，if the columns of A are linearly independent，then $A A^{T}$ is an invertible matrix．
（d）If both A and B are $n \times n$ symmetric matrices，then both $A B$ and $B A$ are also symmetric matrices．

6．(10%) Let T be a linear transformation from a vector space V to another vector space W ． Suppose that the dimensions of V and W are 4 and 6 ，respectively．If $\operatorname{rank}(T)=2$ ，find nullity (T) ，which is the dimension of the null space of T ．

7．(20%) Let A and B be two $n \times n$ matrices，and $C \doteq\left[\begin{array}{ll}A & O \\ O & B\end{array}\right]$ ，where O is the $n \times n$ zero matrix．Choose the true statement（s）from the following．
（a）If both A and B are invertible，then C is also invertible．
（b）If both A and B are diagonalizable，then C is also diagonalizable．
（c）If both A and B are positive－definite，then C is also positive－definite．
（d）The rank of C is the sum of ranks of A and B ．

