第1頁，共3頁

※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。 For your reference：$\varepsilon_{0}=10^{-9} / 36 \pi(\mathrm{~F} / \mathrm{m}) ; \quad \mu_{0}=4 \pi \times 10^{-7}(\mathrm{H} / \mathrm{m}) ; \quad \eta_{0}=120 \pi(\Omega)$

$$
\text { Permittivity } \varepsilon\left(=\varepsilon_{r} \varepsilon_{0}\right) ; \quad \text { Permeability } \mu\left(=\mu_{r} \mu_{0}\right) ; \quad \text { Conductivity } \sigma
$$

一，簡答題（Short－Answer Questions）：（20 分）

1．Please give Maxwell＇s equations in differential form with clear definitions of notations you used．
2．What is the time－average Poynting vector？Please give a formula expression of time－average Poynting vector with the field intensities $\vec{E}(\vec{R})$ and $\vec{H}(\vec{R})$ ．（4\％）

3．What is the standing wave ratio（SWR）in a formula expression of reflection coefficient Γ ？
4．What is the meaning of the degenerate modes in a cavity resonator？（4\％）
5．What is the characteristic impedance Z_{0} of a transmission line which has the transmission－line parameters of R（resistance per unit length），L（inductance per unit length），G（shunt conductance per unit length），and C（shunt capacitance per unit length）as operated at ω ？（4\％）

二，計算題（Calculations）：（80 分）
1．Determine the flux of a vector $\overrightarrow{\mathbf{F}}=3 \hat{\mathrm{a}}_{\mathrm{R}}+4 \hat{\mathrm{a}}_{\theta}+2 \mathrm{R} \hat{\mathrm{a}}_{\varphi}$ out of the closed surface bounded by $\mathrm{R}=2$ ， $0 \leq \theta \leq 90^{\circ}$ ，and $0 \leq \phi \leq 90^{\circ}$ ，as shown in Fig．1．（10\％）

Fig． 1

2．The conductivity of copper is $5.8 \times 10^{7} \mathrm{~S} / \mathrm{m}$ and the relative permittivity and permeability are unity．
（a）Find the intrinsic impedance of copper at $1-\mathrm{MHz}$ ．（5\％）
（b）A $1-\mathrm{MHz}, 1-\mathrm{V} / \mathrm{m}$ uniform plane wave is traveling through a block of copper．Determine the power dissipated in the copper over a distance of $1 \mu \mathrm{~m}$ with a surface area of $2 \mathrm{~m}^{2}$ ．

系所組別：電腦與通信工程研究所丙組

考試科目：電磁學及電磁波

考試日期：0211，節次：2

第 2 頁，共 3 頁

3．An air－filled rectangular waveguide has a cross－section of area by $a \times b$ ，as shown in Fig．2，where the aspect ratio of a / b equals to two（that is，$a / b=2$ ）and the dominant－mode cutoff frequency of this waveguide is 1.2 GHz ．If the measured guided wavelength is 30 cm ．Please find
（a）What is the dominant－mode（that is，in the expression of $\mathrm{TE}_{\mathrm{mn}}$ or $\mathrm{TM}_{\mathrm{mn}}$ ）in this case？（5\％）
（b）What is the operation frequency？
（c）What is the cross section dimensions？（that is，$a=$ ？and $b=$ ？）

Fig． 2

Medium \＃2

Fig． 3

4．A plane wave propagates in the $+z$ direction from Medium \＃1 to Medium \＃2，which is normally incident onward to the interface located at $z=0$ ，as shown in Fig．3．The incident wave is partly reflected back into Medium \＃1（whose wave impedance is η_{1} ）and partly transmitted into Medium \＃2（whose wave impedance is η_{2} ）．Let the incident electric and magnetic field intensity phasors are given as
$\left\{\begin{array}{l}\vec{E}_{i}(z)=\hat{a}_{x} E_{i o} e^{-j \beta_{1} z} \\ \vec{H}_{i}(z)=\hat{a}_{y} \frac{E_{i o}}{\eta_{1}} e^{-j \beta_{1} z}\end{array}\right.$
According to the boundary conditions available，please prove that
（a）The reflection coefficient $\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}$ ．
（b）The transmission coefficient $\tau=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}$ ．
（c）The utility relationship $1-\Gamma^{2}=\frac{\eta_{1}}{\eta_{2}} \cdot \tau^{2}$ ．

第 3 頁，共 3 頁

5．Find the voltage drop across each dielectric in fig．4，where $\varepsilon_{\mathrm{r} 1}=2$ and $\varepsilon_{\mathrm{r} 2}=5$ ．The inner conductor is at $r_{1}=2 \mathrm{~cm}$ and the outer at $r_{2}=3 \mathrm{~cm}$ ，with the dielectric interface halfway between r_{1} and r_{2} ．Assumed the voltage bias is 100 V ．（10\％）

Fig． 4

6．An electric dipole（taken as a Hertzian dipole antenna）is 0.1 m long and has an internal resistance of 0.05Ω ．The peak current in the dipole is 0.5 A ．The dipole radiates in air at a wavelength of 5 m ． Calculate
（a）The radiation resistance of the dipole．（5\％）
（b）The radiated power from the dipole．（5\％）
（c）The antenna efficiency．（5\％）
（d）Maximum power gain（in dB）of this dipole antenna．（5\％）

