編號: 198 ## 國立成功大學 105 學年度碩士班招生考試試題 系 所:電腦與通信工程研究所 考試科目:電子學 考試日期:0228,節次:1 ## 第1頁,共2頁 ※考生請注意:本試題可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 1. For the BJT as an amplifier with V_{CC} = 5 V, R_C = 3k Ω , and β = 100, V_{BE} is adjusted so that V_C = 2 V. A signal V_{be} = 5 sin(ω t) mV is applied. Find the instantaneous response $i_c(t)$ (5%), $v_c(t)$ (5%) and the voltage gain (5%). 2. For an n-channel MOSFET, given the threshold voltage V_{tn} = 0.3 V, conductance parameter K_n = $(1/2*W/L*\mu_nC_{ox})$ = 12.5 mA/V²: (a) At V_{GS} = 0.8 V, V_{DS} = 0.05 V, the transconductance ($g_m = \frac{\partial I_D}{\partial V_{GS}}$) = ? (A/V) (5%)(b) At V_{GS} = 0.8 V, V_{DS} = 1.5 V, the transconductance = ? (A/V) (5%). - 3. For an nMOS transistor fabricated in a 0.25 μm CMOS process with μ_n = 400 cm²/V·s, $\mu_n C_{ox}$ = 115 μ A/V², V_{tn} = 0.5 V, λ_n = 0.06 V¹, W/L = 1.5 and V_{DD} = 2.5 V: - (a) Let L = 0.25 μ m and assume saturation velocity $v_{sat} = 10^7$ cm/s. Find V_{DSsat} . (5%) - (b) Continue (a), let $V_{GS} = V_{DS} = V_{DD}$, calculate the drain current (in velocity saturation). (10%) - 4. For a CE amplifier with a coupling capacitor C_C and a load capacitor C_L . Given $I_c = 1$ mA and $\beta = 100$. You may neglect the effect of r_0 and r_x . Find the bandwidth $(f_H f_L)$ (Hz). (10%) Hint: $r_\pi = \beta/g_m$. 國立成功大學 105 學年度碩士班招生考試試題 編號: 198 系 所:電腦與通信工程研究所 考試科目:電子學 考試日期:0228,節次:1 ## 第2頁,共2頁 5. For a common gate amplifier having $g_m = 1.25$ mA/V, $r_o = 20$ k Ω , $C_L = 15$ fF, $R_L = 20$ k Ω , $R_{sig} = 10$ k Ω , $C_{gs} = 20$ fF, and $C_{gd} = 5$ fF, (a) find the mid-band voltage gain (10%) and (b) use the method of <u>open-circuit time</u> constants to find the 3-dB frequency f_H (Hz) (10%). Hint: $R_{in} = (r_O + R_L)/(1+g_m r_O)$, $R_O = r_O + (1+g_m r_O)R_{sig}$. 6. The following figure shows an ideal voltage amplifier with a gain of -1000 V/V. (a) Use Miller's theorem to find the input capacitance (C_{in}) of the amplifier. (10%) (b) Find the 3-dB frequency f_H (Hz) of the transfer function (V_O/V_{sig}). (5%) 7. A two-stage CMOS op amp is found to have a capacitance between the output node and ground of 1 pF. If the op amp should have a unity gain bandwidth f_t of 100 MHz with a phase margin of 75°, what must g_{m6} be set to? (10%) Assume that a resistance R is connected in series with the frequency-compensation capacitor C_C and adjusted to place the transmission zero at infinity. What is the value of R? (5%)