編號: 194 ## 國立成功大學 105 學年度碩士班招生考試試題 系 所:電腦與通信工程研究所 考試科目:電磁學及電磁波 第1頁,共1頁 考試日期:0228,節次:2 ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 For your reference: $\epsilon_0 = 10^{-9}/36\pi$ (F/m); $\mu_0 = 4\pi \times 10^{-7}$ (H/m); $\eta_0 = 120\pi$ (Ω); $c = 3 \times 10^8$ (m/s) Permittivity ε (= $\varepsilon_r \varepsilon_0$); Permeability μ (= $\mu_r \mu_0$); Conductivity σ 1. Let $\vec{D} = \epsilon \vec{E}$ and $\vec{B} = \mu \vec{H}$, please state the boundary conditions for the tangential components of \vec{E} and \vec{H} as well as the normal components of \vec{D} and \vec{B} . (10%) 2. A constant voltage V₀ is applied to a partially filled parallel-plate capacitor shown in Fig. 1. The permittivity of the dielectric is ε, and the area of the plates is A. Find the force on the upper plate. (15%) Fig. 1 Fig. 2 A Hertzian dipole - 3. (a) Express the magnetic energy density \mathbf{w}_m in a dielectric (with μ) when \vec{H} is applied. (5%) - (b) By using the stored magnetic energy, determine the inductance per unit length of an air coaxial transmission line that has a solid inner conductor of radius **a** and a very thin outer conductor of inner radius **b**. (10%) - 4. (a) Given the electric field intensity \vec{E} , the magnetic field intensity \vec{H} , the volume charge density ρ , and the volume current density \vec{J} in free space, please write out the set of Maxwell's equations in the differential form. (8%) - (b) In the source free condition (that is, ρ = 0 and \vec{J} = 0), please derive the wave equations for \vec{E} and \vec{H} from the Maxwell's equations. (7%) - 5. (a) Find the current required to radiate a power of 50W at 100 MHz from a 0.01 (m) Hertzian dipole. (10 %) (b) Find the magnitudes of \vec{E} and \vec{H} at R = 100 (m) and θ = 90° as Fig. 2 shown. (10%) - 6. A C-band air-filled waveguide for use between 3.95 and 5.85 GHz with a cross-section area of 4.755 (cm) \times 2.215 (cm). Calculate the dominant mode cutoff frequency and the guided wavelength when the operation frequency is 4.2 GHz. (10%) - 7. Given that $\vec{H} = \hat{a}_y \cdot 2\cos(15\pi x)\sin(8\pi \times 10^9 t \beta z)$ (A/m) in air, please find \vec{E} and β . (15%)