國立成功大學106學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:通信數學 考試日期:0214,節次:3

第1頁,共2頁

193

編號:

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. (20%) The joint probability density function (pdf) of random variables (RVs) X and Y is given by $f_{X,Y}(x,y) = ce^{-x}$ if $x \ge 0$ and |y| < x; $f_{X,Y}(x,y) = 0$ if elsewhere. Note that c is a constant (but you need to determine its value by yourself).
 - (a) Determine the conditional pdf $f_{Y|X}(y|x)$ for $x \ge 0$.
 - (b) Assuming $x \ge 0$, find the conditional expectation E(Y|X=x) and the conditional variance Var(Y|X=x).
- 2. (15%) Consider n jointly distributed RVs, X_1, \ldots, X_n . Let a_1, \ldots, a_n be constants.
 - (a) Express $Var(\sum_{i=1}^{n} a_i X_i)$ in terms of $Var(X_i)$ and $Cov(X_i, X_j)$, which denotes the covariance of X_i and X_j .
 - (b) [continued from part (a)] If, in addition, X_i 's are mutually independent, determine $\operatorname{Var}(\sum_{i=1}^n a_i X_i)$.
- 3. (15%) At even time instants, a robot moves either +δ centimeters (cms) or -δ cms in the x-direction if the outcome of a coin flip is a head or a tail, respectively. At odd time instants, a robot moves either +δ cms or -δ cms in the y-direction if the outcome of a coin flip is a head or a tail, respectively. Assuming that the robot begins at the origin, let X and Y be the x- and y-coordinates, respectively, of the location of the robot after 2n time instants. We assume that the outcome of each coin flip is independent of the others; the probability of getting a head in each flip is denoted as q. Find the joint probability mass function (PMF) of X and Y, p_{X,Y}(x, y).

Note: The first time that the robot moves is along the y-direction.

<u>Hints:</u> First, find the marginal PMF of X, $p_X((-n+2k)\delta) = P(X = (-n+2k)\delta)$ where k is an integer. (Think about what the range of k is.) Similarly, find the marginal PMF of Y, $p_Y((-n+2m)\delta) = P(Y = (-n+2m)\delta)$ where m is an integer. (Also think about what the range of m is.)

- 4. (20%) Suppose that A and B are two $n \times n$ matrices. Choose the true statement(s) from the following.
 - (a) A is an invertible matrix if and only if all eigenvalues of A are non-zero.
 - (b) If the set of columns of A is an orthogonal set, then the set of rows of A is also orthogonal.
 - (c) If AB = BA, then A and B have the same row space.
 - (d) If AB = BA, then A and B have the same column space.

編號:

193

國立成功大學106學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:通信數學

考試日期:0214, 節次:3

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 5. (15%) Suppose that V is a vector space, and T is a linear operator on V. Choose the true statement(s) from the following.
 - (a) If T has an eigenvector \mathbf{x} , then \mathbf{x} is also an eigenvector of 2T.
 - (b) If T has an eigenvalue λ , then λ is also an eigenvalue of 2T.
 - (c) T^2 is also a linear operator on V.
- 6. (15%) Suppose that M is an invertible matrix. Prove that the matrix $(M + M^{-1})$ is also an invertible matrix.