編號: 188

國立成功大學108學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁數學

考試日期:0224,節次:3

第 | 頁,共 | 頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. (20%) Solve the following ODEs in terms of Bessel functions, or elementary functions, if possible.

$$xy'' + (1+6x^2)y' + x(2+9x^2)y = 0$$

2. (10%) Let
$$f(z) = \frac{1}{(z^2 + z)(z+2)^3}$$

Compute the integral of f(z) on the circles of center 1 and radii $\frac{1}{2}$, and $\frac{3}{2}$, respectively.

- 3. (20%) Consider the ODE $\frac{d^2y}{dx^2} + p^2y = h(x)$, $0 < x < \pi$, with the boundary conditions $y(0) = 0 = y(\pi)$; y = y(x) is unknown and p is real, p > 0. Find the solution y(x) of this boundary-value problem as an expansion in suitable Fourier series. For what values of p does the problem have a solution?
- 4. (20%) Choose the true statement(s) from the following.
 - (a) If an $n \times n$ matrix A has n distinct non-zero eigenvalues, then the rank of A is n.
 - (b) If all eigenvalues of an $n \times n$ matrix A are zero, then the rank of A is 0.
 - (c) Suppose that the matrices A, B, and C satisfy AB = AC. If A is an invertible square matrix, then we have B = C.
 - (d) Let T be a linear transformation (operator) on a vector space V. Then T+3I is also a linear operator on V, where I denotes the identity operator.
- 5. Suppose that M is a 3×4 matrix with rank 3.
 - (a) (10%) Is it possible that M^TM an invertible matrix? (Give your reasons.)
 - (b) (20%) Let I be the 4×4 identity matrix. Is $(I+M^TM)$ an invertible matrix? (Explain you answer.)