國立成功大學 109 學年度碩士班招生考試試題

所:電腦與通信工程研究所

考試科目: 電磁場與波

考試日期:0211, 節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試顯紙上作答者,不予計分。

Problem 1 (20 Points)

The relative permeability and the magnetic flux density in a finitely conducting magnetic region bounded by a plane $x+3y \le 6$ are 5 and $\vec{B} = 2\hat{a}_x + \hat{a}_y(T)$, respectively. If the other region is characterized by free space, find the \vec{B} field in free space.

Problem 2 (20 Points)

The fields inside an air-filled coaxial line having inner radius a and outer radius b are given as

$$\vec{E} = \hat{a}_{\rho} \frac{V}{\rho \ln(b/a)} e^{j(\omega t - kz)}$$
 (V/m) and $\vec{H} = \hat{a}_{\varphi} \frac{I}{2\pi\rho} e^{j(\omega t - kz)}$ (A/m), where V and I are the peak values of the voltage and the current with an angular frequency of ω rad/sec, ρ , \hat{a}_{ρ} , \hat{a}_{φ} are coordinate and unit vectors of cylindrical coordinates. Show that $k = \omega \sqrt{\mu_0 \varepsilon_0}$ and $\frac{V}{I} = \frac{1}{2\pi} \sqrt{\mu_0 / \varepsilon_0} \ln(b/a)$ directly from Maxwell's equations. Note that in cylindrical coordinates, the curl of a differentiable vector \vec{A} is given by

$$\nabla \times \vec{A} = \frac{1}{\rho} \left(\frac{\partial}{\partial \varphi} A_z - \frac{\partial}{\partial z} \Big(\rho A_\varphi \Big) \right) \hat{a}_\rho + \left(\frac{\partial}{\partial z} A_\rho - \frac{\partial}{\partial \rho} A_z \right) \hat{a}_\varphi + \frac{1}{\rho} \left(\frac{\partial}{\partial \rho} \Big(\rho A_\varphi \Big) - \frac{\partial}{\partial \varphi} A_\rho \right) \hat{a}_z \,.$$

Problem 3 (10 Points)

Prove that the attenuation constant of a good transmission line with distributed parameters R, L, C, and G per

meter is approximately given by
$$\alpha \approx \frac{R}{2Z_0} + \frac{GZ_0}{2}$$
, where $Z_0 = \sqrt{\frac{L}{C}}$.

編號: 191

國立成功大學 109 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁場與波

考試日期:0211, 節次:2

第2頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Problem 4 (20 Points)

A $\lambda/8$ lossless 50-ohm transmission line is terminated by a resistor of 100 ohms as its load. Please find

- (a) the voltage reflection coefficient at the load,
- (b) the voltage reflection coefficient at the input,
- (c) the voltage standing wave ratio on the 50-ohm line, and
- (d) the impedance Z_{in} at the input.

$$Z_{in} \xrightarrow{\sum_{0}^{\infty}} Z_{0} = 50 \Omega, Length = \frac{\lambda}{8} 100 \Omega$$

$$Input \qquad Load$$

Problem 5 (10 Points)

A plane wave in air is obliquely incident on a dielectric medium with $\varepsilon = 3\varepsilon_0$ as shown. What is the percentage of its power got transmitted into the dielectric medium?

$$\mu_0, \varepsilon_0$$
 $\vec{H} \circ \frac{\vec{E} \cdot \vec{A}}{\vec{B} \cdot \vec{A}}$
 $\mu_0, 3\varepsilon_0$

Problem 6 (20 Points)

In an air-filled rectangular waveguide, the cutoff frequency of a TE_{10} mode is $3\,GHz$, whereas that of TE_{01} mode is $4\,GHz$, calculate (a) the dimensions of the guide, and (b) the guided wavelength for TM_{11} mode at $5\,GHz$, if the guide is filled with a lossless material having $\varepsilon_r=4$ and $\mu_r=1$.