國立成功大學 110學年度碩士班招生考試試題

編 號: 192

系 所: 電腦與通信工程研究所

科 目:電子學

日 期: 0203

節 次:第1節

備 註: 可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電子學

考試日期:0203,節次:1

第1頁,共3頁

編號: 192

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Derive the transfer function of the circuit in Fig. 1 with an ideal op amp and show that it can be written in the form $V_0 = R_2/R_1$

(a) Assume that the circuit is designed such that
$$\omega_2 >> \omega_1$$
, what are the ω_1 and $\omega_2 ? (4\%)$

- (a) Assume that the circuit is designed such that $\omega_2 >> \omega_1$, what are the ω_1 and ω_2 \in (4%) Find approximation expressions for the transfer function (V_0/V_1) in the following frequency regions:
- (b) $\omega << \omega_1 (4\%)$
- (c) ω₁<< ω << ω₂ (4%)
- (d) $\omega >> \omega_2$ (4%)

- 2. A current-mirror-loaded MOS differential amplifier as shown in Fig. 2 is biased with a current source I=0.2mA. The two NMOS transistors of the differential pair are operating at overdrive voltage: $V_{ov}=V_{GS}-V_{tn}=0.2V$, and the PMOS device of the mirror are operating at overdrive voltage: $|V_{ov}|=|V_{GS}|-|V_{tp}|=0.2V$. The Early voltage $V_{An}=|V_{AP}|=10V$. Assume $C_{m}=0.1$ pF and $C_{L}=0.2$ pF.
 - (a) Find the dc gain of current-mirror-loaded MOS differential amplifier? (4%)
 - (b) Find the frequencies of the poles (f_{P1} , f_{P2}) and zero (f_z) of the current-mirror-loaded MOS differential amplifier? (12%)

國立成功大學 110 學年度碩士班招生考試試題

編號: 192 **國立成** 系 所:電腦與通信工程研究所

考試科目:電子學

第2頁,共3頁

考試日期:0203,節次:1

- 3. The transconductance amplifier in Fig. 3 utilizes a differential amplifier with gain μ and a very high input resistance. The differential amplifier drives a transistor Q characterized by its g_m and r_o . A resistor R_F senses the output current l_o . The open loop gain and closed loop gain are A and Af, respectively, and the feedback factor is β .
 - (a) For A $\beta >> 1$, select a value for R_F that results in A_f $\equiv l_o/V_s \cong 5$ mA/V.(2%)
 - (b) Find the circuit and derive an expression for A.(4%)
 - (c) Find A and A_f with μ =1000 V/V, g_m =2 mA/V, r_o =20 k Ω , and the value of R_F you selected in (a). (4%)
 - (d) Find values of Ro and Rof. (8%)

- 4. For a dc voltage of 1V applied to the input of the switched-capacitor Filter shown in Fig. 4, in which C_1 is 1 pF, C_2 is 10 pF, and the frequency of the non-overlapping clocks (ϕ_1 and ϕ_2) is 100 kHz.
 - (a) What charge is transferred for each cycle of the two-phase clock? (2%)
 - (b) What is the average current drawn from the input source? (2%)
 - (c) What change would you expect in the output for each cycle of the clock? (3%)
 - (d) What is the average slope of the staircase output voltage produced? (3%)

國立成功大學 110 學年度碩士班招生考試試題

編號: 192

系 所:電腦與通信工程研究所

考試科目:電子學

考試日期:0203,節次:1

第3頁,共3頁

5. [Butterworth Filter Approximation]

(a) Find the Butterworth transfer function that meets the following low-pass filter specifications: passband edge frequency $f_P = 10$ kHz, stopband edge frequency $f_S = 40$ kHz, maximum allowed variation in passband transmission $A_{max} = 1$ dB, minimum required stopband attenuation $A_{min} = 28$ dB, and dc gain = 2. (15%)

(b) Follow (a), if A_{min} is to be exactly 28 dB, to what value can A_{max} be reduced. (5 %)

Some equations you may need during answering this question: $A(\omega_s) = 10\log\left[1 + \epsilon^2\left(\frac{\omega_s}{\omega_p}\right)^{2N}\right]$

$$\left[1+\epsilon^2\left(\frac{\omega_s}{\omega_p}\right)^{2N}\right];\;\epsilon=\sqrt{10^{A_{max}/10}-1};\quad\omega_0=\omega_p(1/\epsilon)^{1/N};\quad\text{and}\;\;T(s)=\frac{\kappa\omega_0^N}{(s-p_1)(s-p_2)\cdots(s-p_N)}$$

6. An op amp with an open-loop voltage gain of 80 dB and poles at 10^5 Hz, 10^6 Hz, and 2×10^6 Hz is to be compensated to be stable for unity β . Assume that the op amp incorporates an amplifier equivalent to that in Fig. 5, with $C_1 = 150$ pF, $C_2 = 5$ pF, and $g_m = 40$ mA/V, and that f_{p1} is caused by the input circuit and f_{p2} by the output circuit of this amplifier. Assume that R_1 and C_1 represent the total resistance and capacitance between node G and ground, and R_2 and C_2 represent the total resistance and capacitance between node D and ground, although they are not depicted here. If the target phase margin is 45° , please find the required value of the compensating Miller capacitance and the new frequency of the output pole. (20%)

Fig. 5