國立成功大學 111學年度碩士班招生考試試題

編 號: 186

系 所:電腦與通信工程研究所

科 目:電磁場與波

日 期: 0219

節 次:第2節

備 註:可使用計算機

编號: 186

國立成功大學 111 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁場與波

考試日期:0219,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Problem 1 (20 Points)

A capacitor is formed by two coaxial conducting cylinders, along the z axis, separated by a dielectric. The outer and inner radii of the dielectric are b and a, respectively. Find the capacitance per unit length, C, if the relative permittivity of the dielectric is given by $\varepsilon_r = 2 + \rho$, where ρ is the distance from the z axis.

Problem 2 (20 Points)

Medium 1 is at z < 0 with $\mu_1 = 2\mu_0$ and $\varepsilon_1 = 4\varepsilon_0$, while medium 2 is at z > 0 with $\mu_2 = \mu_0$ and $\varepsilon_2 = \varepsilon_0$. The interface, z = 0, between these two mediums contains both a current density $\bar{J}_s = \hat{a}_x (A/m)$ and a uniform surface charge density $\rho_s = 7\varepsilon_0 (V/m)$, where $\varepsilon_0 = 8.854 \times 10^{-12} (Farad/m)$. The static electric field intensity and static magnetic field intensity in medium 1 are $\bar{E}_1 = \hat{a}_x + 2\hat{a}_y - \hat{a}_z (V/m)$ and $\bar{H}_1 = 3\hat{a}_x + 3\hat{a}_y + 2\hat{a}_z (A/m)$. Find the *electric field intensity* and the *magnetic field density* in medium 2.

$$\begin{split} & \textbf{Problem 3} \ \, (20 \ Points) \quad \text{For a uniform electromagnetic plane wave defined by} \\ & \bar{E} = \left[4\bar{a}_x + E_y \, \bar{a}_y + \left(2 + j \, 5 \right) \bar{a}_z \, \right] e^{j\left(\omega t + 6\pi x - 8\pi y\right)} \quad \text{and} \quad \bar{H} = \left(H_x \, \bar{a}_x + H_y \, \bar{a}_y + H_z \, \bar{a}_z \right) e^{j\left(\omega t + 6\pi x - 8\pi y\right)}, \\ & \text{where } E_y \, , H_x \, , H_y \, , \text{ and } H_z \, \text{are all independent of } x \, , y \, , \text{ and } z \, , \text{ determine} \end{split}$$

- (a) the components E_y , H_x , H_y , and H_z , assuming that $\mu=\mu_0$ and $\varepsilon=\varepsilon_0$.
- (b) the wavelength and frequency, and (c) the wave polarization.

編號: 186

國立成功大學 111 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁場與波

第2頁,共2頁

考試日期:0219,節次:2

Problem 4 (20 Points)

- (a) Plot a simple Smith chart with constant normalized resistance circles of $r_n = 0$, 0.5, 1.0, and 2.0.
- (b) Plot a simple Smith chart with constant normalized reactance circles of $x_n = -2, -1, -0.5, 0, 0.5, 1, \text{ and } 2.$
- (c) Plot a simple Smith chart with the loci of $|Z_n| = 0.5$, 1, and 2.
- (d) Plot a simple Smith chart with the loci of $x_n / r_n = -2$, -1, 0, 1, and 2.
- (e) The position of a load Z_L on a Smith chart normalized to Z_0 is at *Point A*. If this load Z_L is now connected to the end of a $(3/8)\lambda$ transmission line of Z_0 , and the input impedance at the other end of the line is called Z_{in} . How do you find Z_{in} on the Smith chart from *Point A*?

Problem 5 (20 Points) The electric field of a particular mode in a parallel-plate air waveguide with a plate separation of 5 cm is given by $E_x(y,z) = 10e^{-j30\pi y}\sin(40\pi z)$ (V/m).

- (a) What is this mode?
- (b) What is the operating frequency?
- (c) What is the wave impedance looking in the guiding y direction?
- (d) What is the highest-order mode, with the same operating frequency and polarization, that can propagate in this waveguide?