國立成功大學

114學年度碩士班招生考試試題

編 號: 137

系 所: 電腦與通信工程研究所

科 目:電磁場與波

日 期: 0210

節 次:第2節

注 意: 1.可使用計算機

2. 請於答案卷(卡)作答,於 試題上作答,不予計分。

Problem 1 (20 Points)

- (a) A circular cylinder along the z-axis has its $\mu_r = 100$ and a magnetic flux density $\vec{B}_{in} = 5\hat{a}_{\varphi}$ (T) inside. The exterior of the cylinder is air. Find the magnetic flux density just outside the cylinder \vec{B}_{out} .
- (b) The x=0 plane contains a current sheet of density \vec{K} which separate region 1, x<0 and $\mu_{r1}=2$, from region 2, x>0 and $\mu_{r2}=7$, Given $\vec{B}_1=6\hat{a}_x+4\hat{a}_y+10\hat{a}_z$ (T) and $\vec{B}_2=6\hat{a}_x-14\hat{a}_y+21\hat{a}_z$ (T), find \vec{K} .

Problem 2 (20 Points)

Find the scalar potential ϕ and the electric field intensity \bar{E} (for any time t), based on the *Lorenz* condition, if the vector potential is given in free space as $\bar{A} = \hat{a}_z(xz/c-xt)$, where c is the speed of light in free space, $\phi = xz$ and $\bar{E} = -\hat{a}_xz$ when t = 0.

Problem 3 (20 Points)

In a source-free dielectric medium ($\varepsilon = 9\varepsilon_0$, $\mu = \mu_0$), the magnetic field intensity is given as $\bar{H} = \cos(10^9 t - 3kx - 4kz)\hat{a}_y$ (A/m), where k is a constant. By using Maxwell's equations, find (a) the displacement current density, (b) the electric field intensity, (c) the constant k, (d) time average power per square meter in +z direction.

Problem 4 (20 Points)

A 100-ohm transmission line is terminated at a load of 300 ohms. Find (a) the voltage reflection coefficient at the load location, (b) the VSWR on the line, (c) the voltage reflection coefficient and the input impedance $\lambda/8$ away from the load.

Problem 5 (20 Points)

An air-filled metallic parallel-plate waveguide, with the plate separation of $6 \, cm$, has the magnetic field intensity as $\bar{H} = \cos(50\pi x)\cos(39\pi \times 10^9 t - \beta z)\hat{a}_y$ (A/m). (a) What is name of this mode? (b) What is the cutoff frequency of this mode? (c) What is the guide wavelength of this wave in the z-direction? (d) What is the group velocity of this wave?