國立成功大學

114學年度碩士班招生考試試題

編 號: 133、142、145

電機工程學系

系 所: 電腦與通信工程研究所

電機資訊學院-微電、奈米聯招

科 目:電子學

日 期: 0210

節 次:第1節

注 意: 1.可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。 1. The common-source (CS) amplifier in Fig. 1 is biased to operate at g_m=5 mA/V, and has the following component values: R_{sig} =100 k Ω , R_{G1} =47 M Ω , R_{G2} =10 M Ω , C_{C1} =0.01 μ F, R_{S} =2 k Ω , C_{S} =10 μ F, R_{D} =4.7 k Ω , R_{L} =10 k Ω , and C_{C2} =1 μ F. Neglect r_{o} and find (a) gain (A_{M} = V_{o} / V_{sig}), (b) input pole (f_{P1}), (c) source pole (f_{P2}), (d) source zero (f_{Z}), (e) output pole (f_{P3}), and (f) -3dB frequency (f_{L}). (30%)

- 2. The circuit in Fig. 2 utilizes a voltage amplifier with gain μ in a shunt-shunt feedback topology with a feedback network composed of resistor $R_F=20~k\Omega$, input resistor $R_S=2~k\Omega$, and load resistor $R_L=\infty$.
 - (a) If the amplifier μ has a DC gain of 10³ V/V, an input resistance R_{id} =100 k Ω , and an output resistance r_o =2 k Ω , find the actual V_o/V_S realized. Also, find R_{in} and R_{out} . (15%)
 - (b) If the amplifier μ has an upper -3dB frequency of 1 KHz and a uniform -20-dB/decade gain rolloff, what is the 3-dB frequency of the gain $|V_o/V_S|$. (5%)

- 3. Please design a two-stage CMOS op amp, as shown in Fig. 3, for obtaining a dc gain of 4000 V/V. Assume that the available fabrication technology is of the 0.5- μ m type for which $V_{tn} = |V_{tp}| = 0.5 \text{ V}$, $k_n' = 200 \,\mu\text{A/V}^2$, $k_p' = 80 \,\mu\text{A/V}^2$, $V'_{An} = |V'_{Ap}| = 20 \,\text{V/}\mu\text{m}$, and $V_{DD} = |V_{SS}| = 1.65 \text{V}$. To achieve a reasonable dc gain per stage, use $L = 1 \,\mu\text{m}$ for all devices. Also, for simplicity, operate all devices at the same $|V_{OV}|$, in the range of 0.2 V to 0.4 V. The current is given to be $I = 200 \,\mu\text{A}$ and $I_{D6} = 500 \,\mu\text{A}$, and C_C is 1.8 pF.
 - Please give the values realized for the following parameters (4% each)
 - (a) input common-mode range,
 - (b) maximum possible range of the output swing,
 - (c) output resistance R_o ,
 - (d) common-mode rejection ratio (CMRR),
 - (e) power-supply rejection ratio PSRR+,
 - (f) power-supply rejection ratio PSRR-,
 - (g) slew rate (SR),
 - (h) unit-gain frequency (ft).

Fig. 3

- 4. For the quadrature oscillator shown in Fig. 4, please briefly answer the questions (a)-(f), (3% each)
 - (a) What is the function of the circuit enclosed in the dash-circle line 1?
 - (b) What is the function of the circuit enclosed in the dash-circle line 2?
 - (c) What is the function of the circuit enclosed in the dash-circle line 3?
 - (d) Which value of R_f should we use for maintaining the oscillation?
 - (e) Follow 4(d), what is the oscillation frequency ω_0 ?
 - (f) What is the phase difference of the sinusoidal signals of v_{01} and v_{02} ?

Fig. 4