- (a) A CMOS inverter pair is shown in Fig. 1(a). Let V_{TN} =0.8V, V_{TP} =-0.8V, and K_{D} =Kp. 1.
 - (i) If v_{O1} =0.6V, determine v_1 and v_{O2} . (ii) Determine the range of v_{O2} for which both N_2 and P2 are biased in the saturation region. (20%)
 - (b) What is the function realized at Y in the CMOS circuit shown in Fig. 1(b)? (5%)

- Your answers must be as brief as possible for the following questions 2.
 - (a) List the parameters used to specify the transmission characteristics of a low-pass filter. (5%)
 - (b) A filter transfer function is written as the ratio of two polynomials. its denominator is P and the degree of its numerator is R. What's the order of the filter? (5%)
 - (b) For the filter in (b) to be stable, what is the relation between P and Q. (5%)
 - (c) For the amplifier in Fig. 2, what's the class of its output stage? (Hint: one of class AB, A, B, C, D, E, ..., etc.) (5%)
 - (d) What is the function of the R and Cc in Fig. 2? (5%)
- A multiple amplifier having a first pole at IMHz and an open-loop gain of 100dB is to 3. be compensated for closed-loop gains as low as 20 dB by introduction of a new dominant pole. At what frequency must the new pole be placed?(3%)
- Consider the complementary BJT class B output stage and neglect the effects of V_{BE} 4. and V_{CEsat} . For $\pm 10\text{V}$ power supplies and a 100- Ω load resistance, what is the maximum sine-wave output power available? What supply power corresponds? What

(背面仍有題目.請繼續作签)

is the power-conversion efficiency? For output signals of half this amplitude, find the power-conversion efficiency.(10%)

- 5. As the circuit shown in Fig.3, let β =100, C_{μ} =2pF and f_{T} =400MHz. Calculate the midband gain and the upper 3-dB frequency. (12%)
- 6. Draw and explain briefly the possible load line of an enhancement-mode n-MOSFET using (a) a forward-biased diode, or (b) a reverse-biased diode, or (c) a depletion-mode n-MOSFET with $V_{GS}=0\ V$ as the load device. (15%)
- 7. Calculate the small-signal input resistance R_i as shown in Fig. 4. Assume $R_B = R_C = 2 \ k\Omega$, $g_m = 25 \ mS$, $\beta = 100$, and $r_o = \infty$ (10%)

Fig.3

Fig.4