93學年度國立成功大學電腦與通信工程研內組 電磁學及電磁波 空所

試題 第 / 頁

- * Useful constants: $\epsilon_0 = 10^{-9}/(36\pi)$ (F/m); $\mu_0 = 4\pi \times 10^{-7}$ (H/m); $C = 3 \times 10^8$ (m/s)
- (a) Write down the formula of the displacement current density and the generalized Ampere's law (with the displacement current density) in the Maxwell's equations. (5%)
 - (b) Explain what is the difference between the displacement current and the free current?
- 2. Determine the attenuation ratio (dB) and the phase velocity u_p of a plane wave (f = 100 MHz) at a distance of 100m below the surafce of the sea water $(\varepsilon_r = 80, \sigma = 5(S/m)@f = 100 \text{MHz})$. (10%)

Note that the complex propagation constant in a good conductor is $\gamma \approx \frac{(1+j)}{\sqrt{2}} \sqrt{\omega \mu_0 \sigma}$

- 3. The illustration of the microstrip (transmission) line are shown in the following figures. The microstrip-line 1 $(Z_{01}=50\Omega)$ is connected to a parallel connection (at z=0) of the microstrip-line 2 $(Z_{02}=100\Omega, l_2=0.25 \lambda)$ with a load Z_L and the the microstrip-line 3 $(Z_{03}=100\Omega, l_3=0.25 \lambda)$ with a short-circuited (S.C.) load. $(f=0.25 \lambda)$
 - (a) Explain why the microstrip line can not support a pure TEM wave. (5%)
 - (b) Determine the line width (W) and length (I) of the microstrip line 2 (substrate $\varepsilon_r = 4$ and h = 1mm). * Use the simple parallel-plate formula with TEM wave approximation. (10%)
 - (c) If $Z_L = 250\Omega$ and the incident voltage (signal wave) is $V_1^+(z) = V_0 e^{-j\beta_1 z}$ in the microstrip line 1, determine the **reflection coffecient** (Γ) and the **SWR** at the point of z = 0 and write down the reflected voltage (wave), $V_1^-(z)$, in the microstrip line 1. (15%)
 - (d) If the microstrip-line 1 is a lossless transmission line and the distributed parameter L = 1.25 nH/m, determine the **distributed parameter** C (pF/m) and the **propagation** constant β_f at f = 1GHz. (10%)

(背面仍有題目,請繼續作答)

4. Waveguide Problem

An **automotive tunnel** (汽車隧道) with a rectangular cross section (width a = 15m & height b = 6 m) is with **metal walls**. If we treat this tunnel as a **waveguide**:

- (a) Determine the **lowest frequency** of the radio wave that will propagate through this tunnel and write down the mode (TE_{mn} or TM_{mn}) of this wave. (5%)
- (d) Let the **length of the tunnel** is 100 m and a 12-MHz radio wave propagating into this tunnel (assuming the tunnel wall made of aluminum $\mathcal{E}_{\sigma_c} = 4 \times 10^8$). Find the total attenuation (dB) of this radio wave through this tunnel. (10%)
- (f) Dtermine the VSWR of the radio wave at the other side of the tunnel-waveguide (like having a free-space load). (5%)

Note: Waveguide wavelength & TE10-mode impedance

$$\lambda_g = \lambda / \sqrt{1 - (f_c/f)^2}$$
 & $Z_{TE} = \eta_0 / \sqrt{1 - (f_c/f)^2}$

Waveguide TE₁₀ mode attenuation constant

$$\alpha_{c_{TE10}} = \frac{\lambda}{b\lambda_g} \sqrt{\frac{\pi}{\lambda \eta_0 \sigma_c}} \left[1 + \left(\lambda_g / \lambda_c \right)^2 \left(1 + 2 \frac{b}{a} \right) \right]$$

- 5. As shown in the following figure, let the **input power** P_t to a Hertzian dipole antenna (with an unifrom current distribution I) is $P_t = 1$ W and f = 1 GHz, h = 10 m.
 - (a) What kind of polarization of the far-zone radiated wave from this Hertzian dipole. (5%)
 - (b) Determine the **radiation power density** p_{av} (or S) (W/m²) from the Hertzian dipole antenna at a cellular phone **handset** for a distance of d = 100m. (15%)

*Note: The current of the Hertzian dipole antenna can be determined from the antenna input power P_t which is equal to the radiation power $P_{rad} = \eta_0 (klI)^2 / 12\pi$

