93學年度國立成功大學 電腦與通信工程研 丙組 電磁數學 究所招生考試 究所

試題 井 / 頁

1. (16 %) Solve the following differential equation

$$y'' + x(y')^2 = 0$$

2. (16 %) Solve the following differential equation

$$2y^2y'' + 2y(y')^2 = 1$$

3. (18 %) Two linearly independent solutions of Bessel's equation of order one-half

$$x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$$
, $x > 0$

are $x^{-1/2} \sin x$ and $x^{-1/2} \cos x$. Find the general solution of

$$x^2y'' + xy' + (x^2 - \frac{1}{4})y = 3x^{3/2}\sin x$$
, $x > 0$

by using the Method of Variation of Parameter.

- 4. (14 %) Let \mathbf{J}_n be an $n \times n$ matrix each of whose entries is 1. Please show that $(\mathbf{I} \mathbf{J}_n)^{-1} = \mathbf{I} \frac{1}{n-1} \mathbf{J}_n$.
- 5. (10%, 6%) Let A be an $m \times n$ matrix. (a) Show that BA and A have the same nullspace, if B is a nonsingular $m \times m$ matrix. (b) Show that AC and A have the same rank, if C is a nonsingular $n \times n$ matrix.
- 6. (10%, 10%) (a) Find a orthonormal basis for the subspace spanned by $\{1, \cos x\}$ in the vector space $C[0, \pi]$ with the inner product defined by $\langle f, g \rangle = \frac{1}{\pi} \int_0^{\pi} f(x)g(x)dx$. (b) Find the best least squares approximation to

x on the interval [0, π] by a linear combination of 1 and $\cos x$.