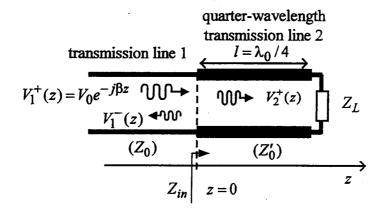

編號: 148 系所:電腦與通信工程研究所丙組

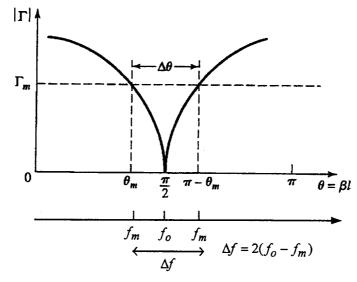
科目:電磁學及電磁波

- * Useful constants : $\epsilon_0 = 10^{-9}/(36\pi)$ (F/m); $\mu_0 = 4\pi \times 10^{-7}$ (H/m); $C = 3 \times 10^8$ (m/s)
- 1. Explain what is the difference between the **displacement current** and the **free current** in the Maxwell's equations? (5%)
- 2. A z-directed Hertzian dipole antenna (I = 1A, l = 0.11cm, f = 10GHz) is located inside a dielectric space as shown in the figure.
 - (a) What type of the EM wave (TE, TM, TEM) rom the Hertzian dipole at the point O? Why?. (5%)
 - (b) Determine the **power density** $P_{av}(W/m^2)$ of the the incident wave at the point O from the Hertzian dipole. (5%)
 - (c) Determine the angle of the reflected and transmitted wave (at the point O) for the incident wave radiated from the Hertzian dipole. (10%)

Hertzian dipole far-zone radiation fields

$$\begin{cases} \bar{E} = \hat{\theta} j \eta k I l \frac{e^{-jkr}}{4\pi r} \sin \theta \\ \bar{H} = \hat{\phi} j k I l \frac{e^{-jkr}}{4\pi r} \sin \theta \end{cases}$$

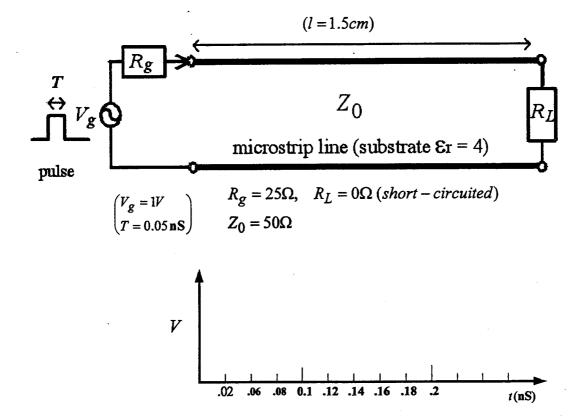

編號: 7 148 系所:電腦與通信工程研究所丙組


科目:電磁學及電磁波

3. For a quarter-wavelength line transformer with a real lad impedance (Z_L) , the following curve shows an approximate response of the reflection coefficient magnitude $(|\Gamma|)$ near its design (central) frequency (f_o) . It means $\Delta\theta << \pi/2$ and $\Delta f << f_0$. Γ_m can be derived as

$$\frac{1}{\Gamma_m^2} = 1 + \left[\frac{2\sqrt{Z_0 Z_L} \sec \theta}}{|Z_L - Z_0|} \right]^2$$

- (a) Prove that $\frac{\Delta f}{f_o} = 2 \frac{4}{\pi} \cos^{-1} \left[\frac{\Gamma_m}{\sqrt{1 \Gamma_m^2}} \frac{2\sqrt{Z_0 Z_L}}{|Z_L Z_0|} \right]$ (10%)
- (b) For $\Gamma_m = 0.5$ and $Z_L = 4Z_0$, determine Δf and reflected and transmitted voltage (to the load), $V_1^-(z)$ and $V_2^+(z)$, at $f = f_m$. (15%)
- (c) For an input power $P_1=0dBm$, determine the reflected and transmitted power (to the load), $P_r(dBm)$ and $P_t(dBm)$, at $f=f_m$. (10%)


* For
$$l = \frac{\lambda_0}{4}$$
, $\theta = \beta l = \frac{2\pi}{\lambda_0} \frac{\lambda_0}{4} = \frac{\pi}{2}$ at $f = f_0$

國立成功大學九十四學年度碩士班招生考試試題

編號: 人 148 系所: 電腦與通信工程研究所丙組

科目:電磁學及電磁波

- 4. (a) Briefly explain why a microstrip line can not support a pure TEM wave. (10%)
 - (b) For a PCB substrate (d=1 mm, $\varepsilon_r=4$), determine the microstrip line width (W) and length (I) of a $\lambda/4$ microstrip line at f=1 GHz with a characteristic impedance of 50 Ω by using the <u>parallel-plate line</u> approximation (assuming a pure TEM wave propagating in the parallel-plate line) (10%)
 - (c) As shown in the figure, a pulse signal is applied to a microstrip-line circuit on a PCB substrate of (b). Plot the voltage waveform at the midpoint of the line as a function of time up to 0.2 nS. (20%)

