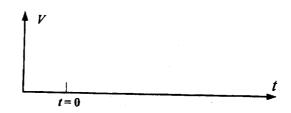
編號: 277 系所:電腦與通信工程研究所丙組


科目:電磁學及電磁波

本試題是否可以使用計算機: □ 有使用 , □ 不可使用 (請命題老師勾選)

- * Useful constants : $\epsilon_0 = 10^{-9}/36\pi$; $\mu_0 = 4\pi \times 10^{-7}$; $\eta_0 = 120\pi$
- 1. (a) For a perfectly-matched two-port microwave 3-dB attenuator (3-dB 衰減器), determine its S- parameter matrix. (5%)
 - (b) If the **input and output VSWR** of a two-port 3-dB microwave attenuator are all equal to 1.5 (and assuming the input and output impedance are all real), determine its S-parameter matrix. (5%)

S-parameter matrix: $\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$

2. At t = 0 for an unit step signal incident to a short-circuited microstrip transmission line with a length L on a substrate of thickness d and diectric constant ε_r , draw the <u>reflected</u> and <u>total signal voltage</u> as a function of time. (Note: assuming a pure TEM wave propagating in the microstrip transmission line) (10%)

3. Determine the length l (in term of wavelength λ) of a short-circuited transmission line $(Z_0 = 50 \Omega)$ to have an equivalent inductance L = 5 nH at f = 1 GHz. (10%)

Note: assuming the transmission line is lossless with a <u>propagation constant</u> β .

- * General input impedance formula of a lossless transmission line with a length l and load Z_L : $Z_i = Z_0 \frac{Z_L + jZ_0 \tan(\beta l)}{Z_0 + jZ_L \tan(\beta l)}$
- 4. For an air-filled rectangular waveguide $(a \times b)$, it can be proven that the normalized frequency at which the TE_{10} mode exhibits its minimum attenuation is

$$f/f_c = \left[g + \sqrt{g^2 - (2b/a)}\right]^{1/2}$$
 $g = \frac{3}{2} + \frac{3b}{a}$

If a waveguide is with (a = 6 mm, b = 3 mm), determine the operating frequency of the TE₁₀ mode which exhibits its minimum attenuation. (10%)

Waveguide TE₁₀ mode attenuation constant:

$$\alpha_{c_{TE10}} = \frac{1}{\eta_0 b} \sqrt{\frac{\pi f \,\mu_0}{\sigma_c [1 - (f_c/f)^2]}} \left[1 + 2 \frac{b}{a} (f_c/f)^2 \right]$$

(背面仍有題目.請繼續作答)

國立成功大學九十六學年度碩士班招生考試試題

共 2 頁,第2頁

 $l \ll \lambda$

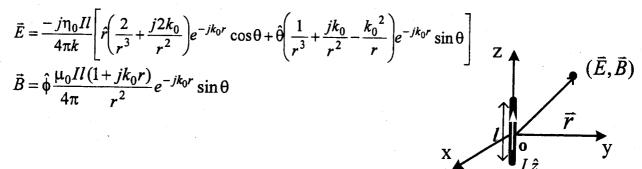
編號: 277 系所:電腦與通信工程研究所丙組

科目:電磁學及電磁波

本試題是否可以使用計算機: □ 有使用 , □ 不可使用 (請命題老師勾選)

5. The Helmholtz's equation in a source-free lossy medium $(\varepsilon, \mu, \sigma)$ is as follows.

$$\nabla^{2}\vec{E} + k_{c}^{2}\vec{E} = 0$$


$$k_{c} = \sqrt{-j\omega\mu(\sigma + j\omega\epsilon)} = \omega\sqrt{\mu\epsilon(1 + \frac{\sigma}{j\epsilon\omega})} = \omega\sqrt{\mu\epsilon_{c}},$$

$$\epsilon_{c} = \text{equivalent complex - permittivity}$$

(a) Determine the approximated intrinsic (wave) impedance η_c of a TEM wave in a good conductor ($\sigma/\epsilon\omega >> 1$).(10%)

Note: Use the condition $\sigma/\epsilon\omega >> 1$ and $\sqrt{j} = \frac{(1+j)}{\sqrt{2}}$

- (b) From (a) explain that E- and H-field of a TEM wave in a good conductor have a phase difference of 45°.(5%)
- 6. For a z-directed Hertzian dipole antenna with an uniform current distribution I in a free space, the radiated E- and B-filed can be derived as follows.

- (a) Derive the near-zone and far-zone radiated E- and H-field. (10%)
- (b) From (a) Express the relation between the far-zone E- and H-field. (5%)
- (c) Draw an approximated **E-plane** (at $\phi = 0^0$) antenna pattern in <u>linear scale</u>. (5%)
- (d) Determine the far-zone radiation power density P_{av} and the total radition power P_{rad} . (15%) Note: $\left(\int_{0}^{\pi} (\sin\theta)^{3} d\theta = 4/3\right)$
- (e) Explain the meaning of the antenna radiation resistance $R_{\rm rad}$. Determine the $R_{\rm rad}$ of a Hertzian dipole. (10%)