图 266 279 國立成功大學九十六學年度碩士班招生考試試題

編號: 254 系所:電機工程學系丁組,早入戊,稅學分析科目:電子學

本試題是否可以使用計算機: 以可使用 , □不可使用 (請命題老師勾選)

- 1. Consider the circuit in Fig. 1. The transistor parameters are $V_{TN} = 1$ V and $k_n' = 36$ μ A/V². Determine the width-to-length ratio required in transistor M₂ such that I_D = 0.5 mA, $V_I = 2$ V, and $V_2 = 5$ V. (10%)
- 2. For the TTL circuit in Fig. 2, assume parameters of $\beta_F = 50$, $\beta_R = 0.1$, $V_{BE}(\text{on}) = 0.7 \text{ V}$, $V_{BE}(\text{sat}) = 0.8 \text{ V}$, and $V_{CE}(\text{sat}) = 0.1 \text{ V}$. Determine the power dissipated in the circuit (no load condition) for (a) $V_{\text{in}} = 0.1 \text{ V}$ and (b) $V_{\text{in}} = 5 \text{ V}$. (20%)

Fig. 1

- Fig. 2
- 3. (a) Why the current of a forward-biased p-n junction is an exponential function of the bias voltage? (5%)
 - (b) Calculate the overall voltage gain of a common-source amplifier for which $g_m = 2.5 \, mA/V$, $r_o = 100 \, k\Omega$, and $R_G = 1000 R_D = 10 \, M\Omega$. Assume the amplifier is fed from a signal source with a Thevenin resistance of $0.5 \, M\Omega$, and the amplifier output is coupled to a load resistance of $25 \, k\Omega$. (5%)
 - (c) For the circuit shown in Fig. 3, draw the possible load line of the Schottky transistor and explain the advantage(s) of using such a Schottky transistor in this circuit. (10%)
- 4. (a) Assume $V_{CC}=15~V~V_{BE}=0.7~V~R_1=2R_2=100~k\Omega$, $\beta_{dc} (\equiv I_C/I_B)=75~, \text{ and } R_C=3R_E=6~k\Omega \text{ for the circuit shown in Fig. 4, calculated } V_{CE} \text{ and } I_C~(10\%)$
 - (b) Assume the circuit shown in Fig. 5 has matched BJTs, derive the small-signal input resistance R_i , output resistance R_o , and current gain $A_i (= i_o / i_i)$. (7%)

(背面仍有題目.請繼續作答)

248 259 279

國立成功大學九十六學年度碩士班招生考試試題

共 2 頁,第2頁

編號:

254 27条所:電機工程學系丁組.甲.2.戊,後25分 科目:電子學

本試顯是否可以使用計算機: 可可使用 , 一不可使用 (請命題老師勾選)

- 5. We need an amplifier with a rise time of 300 ns. The amplifier we have has rise time of 3 μ s and gain of 40. Find the resulting feedback factor β , if we correct the rise time problem with negative feedback. (5%)
- 6. We have a nonfeedback amplifier with voltage gain of 920, $R_o = 3k\Omega$ and $R_i = 11k\Omega$. (a) Determine the class of feedback amplifier so that $R_{of} \leq 10\Omega$ and $R_{if} \geq 800k\Omega$. (4%) (b) Find the feedback factor β and closed-loop gain A_f of the feedback amplifier. (4%)
- 7. Consider the circuit shown in Fig. 6, Let $R_1 = 2k\Omega$, $R_2 = 667\Omega$, $R_3 = 200k\Omega$, $C = 0.1\mu F$. Assume that op amp is ideal.
- (a) Find $\frac{V_o}{V_i}$ as a function of passive components R_1 , R_2 , R_3 and C. (8%)
- (b) Find the zeros and poles of this transfer function. (4%)
- (c) Plot the magnitude response of this transfer function. (8%) (Note: you have to show some numerical values at the important points on this plot to get the grade points).

Fig. 6