編號:

224

國立成功大學九十八學年度碩士班招生考試試題

共 2頁,第/頁

系所組別: 電腦與通信工程研究所丙組

考試科目: 電磁學及電磁波

考試日期:0307,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

* Useful constants: $\epsilon_0 = 10^{-9}/36\pi$; $\mu_0 = 4\pi \times 10^{-7}$; $\eta_0 = 120\pi$

1. If a charge of 1 [C] is applied to a perfectly conducting sphere with the radius a = 1 cm, determine the \bar{E} field [V/m] (including the vector of the field) on the surface of the sphere. (10%)

2. Maxwell's Equations

- (a) Write down the time-variant equation of Ampere's Law with the displacement current in differential form. (10%)
- (b) Explain the difference between the displacement current and free current. (10%)
- 3. If the input SWR of an antenna is SWR_{ant}=3, what is the SWR_{ant+3-dB attenuator} when the antenna is connected to a 3-dB attenuator (assuming the attenuator is perfectly matched).
 - *You must solve the problem from the basic definition of SWR, reflection coefficient Γ , and 3-dB attenuation. (10%)

4. A microstrip transmission line is connected with with two shunt open-circuited transmission line (left figure). If $\theta_a(=\beta l_a) = 45^o$, $\theta_b(=\beta l_b) = 20^o$, the transmission-line characteristic impedance $Z_a = 100 \ (\Omega)$, $Z_b = 36.4 \ (\Omega)$, determine the input impedance Z_{in} . (15%)

5. The following figure shows the E_z -filed distribution of a waveguide mode on the cross-section of a rectangular waveguide $(a \times b)$.

What is this waveguide mode (TE_{mn} or TM_{mn} , m = ? n = ?) and write down the formula of E_z filed $E_{0z}(x, y) = E_0[?]$ (10%)

transmission line

編號:

224

國立成功大學九十八學年度碩士班招生考試試題

共 之頁,第2頁

系所組別: 電腦與通信工程研究所內組

電磁學及電磁波 考試科目:

考試日期:0307, 節次:2

※ 考生請注意:本試題 □河 □不可 使用計算機

In a 60-GHz radar system, let the radar antenna gain G = 20 dB and the target radar cross section (RCS) $\sigma = 10^{-2} \, (\text{m}^2)$. If the transmitting power $P_t = 0$ dBm and the required radar minimum receiving power P, = -60 dBm, determine the radar maximum detectable distance R (m). (10%)

Radra equation:

$$P_r = \frac{P_t G^2 \lambda^2 \sigma}{\left(4\pi\right)^3 R^4}$$

7. A Hertzian antenna with a length I and a current I is located above a dielectric ground plane $(\varepsilon_r=4)$ with a height of h. Let the origin O of this radiating system is at the center of the Hertzian antenna and the far-zone E field is as follows. (per sigure (4)

$$\vec{E} = \hat{\theta} j \eta_0 k H \frac{e^{-jkr}}{4\pi r} \sin \theta$$

$$\frac{\sin \theta_t}{\sin \theta_t} = \frac{\sqrt{\varepsilon_{r1}}}{\sqrt{\varepsilon_{r2}}}$$

The illustration and formulas of the reflected coefficient (Γ_{\perp} and $\Gamma_{//}$) for the perpendicular and parallel polarization are shown in the (b) (c) figures. If h = 1 m and d = 110 m, determine the reflected E filed at the point P. (15%)

perpendicular polarization $(\vec{E} \perp xz - plane)$

$$\Gamma_{\perp} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_i} \qquad \Gamma_{\parallel} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_i}$$

 $(\vec{E}//xz - plane)$

$$\Gamma_{\parallel} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_i}$$

8. In a conductive medium, the propagating constant $\gamma (=\alpha + j\beta = j\omega \sqrt{\mu\epsilon(1+\frac{\sigma}{j\epsilon\omega})})$ can be approximated for a good conductor or dielectrics as follows.

$$(\sigma/\omega\epsilon) >> 1 \implies \alpha = \beta \approx \sqrt{\pi f \mu \sigma} \; ; \quad (\sigma/\omega\epsilon) << 1 \implies \alpha \approx \frac{\sigma}{2} \sqrt{\mu/\epsilon}, \quad \beta \approx \omega \sqrt{\mu\epsilon} \; [1 + \frac{1}{8} (\frac{\sigma}{\omega\epsilon})^2]$$

For a 30-Hz plane wave incidents from free space to seawater ($\sigma = 4[S/m]$, $\epsilon_r = 80$ @30 Hz), calculate the distance d below the seawater surface where E-field is 10% of its value at nthe surface. (10%)