編號:

207

國立成功大學九十九學年度碩士班招生考試試題

系所組別: 電腦與通信工程研究所甲組

考試科目: 計算機組織與作業系統

考試日期:0307, 節次:1

共2頁,第一頁

※ 考生請注意:本試題 □可 □不可 使用計算機

1. Design a cache for the following cases. Show the block diagram of the design, including buses used for the cache, the tag memory, data memory, and how the address to the cache is used. The cache size is 16K-bytes for all cases.

- a. A direct-mapped cache with 32-bytes of the line size. 10%
- b. A four-way set associative cache with 64-bytes of the line size. 10%
- c. Compute the tag memory size in bits of the caches in (a) and (b) respectively.
 10%

2. True or false 2% each

- a. A blocking cache allows a load instruction to access the cache if the previous load is a cache miss which is still in progress.
- b. A load-use data hazard occurs because the pipeline flushes the instructions behind.
- c. It is possible that an access results in a TLB hit, a page table hit, and a cache miss.
- d. It is impossible that an access results in a TLB hit, a page table miss, and a cache hit.
- e. It is impossible that an access results in a TLB miss, a page table hit, and a cache hit.
- f. Checking the status bit of an I/O address to see if it is time for the next I/O operation is called interrupt.
- g. A system using a write-through cache as its private cache will not have cache coherence problem since the written data are also updated in the main memory.
- h. When an interrupt occurs, the processor must always respond to the interrupt and enter the interrupt service routine.
- i. ISA (instruction set architecture) is an abstraction that enables different implementations of the same ISA for the processor, for example, a pipelined implementation or a non-pipelined one.
- j. A page fault is signaled by a system call.

編號:

207

國立成功大學九十九學年度碩士班招生考試試題

共2頁,第2頁

系所組別: 電腦與通信工程研究所甲組

考試科目: 計算機組織與作業系統

考試日期:0307,節次:1

※ 考生請注意:本試題 □可 ☑不可 使用計算機

3.	System c	alls can	be	grouped	roughly	into	five	major
	categories:		,			_, and	5%	
4.	When an int	terrupt occu	irs, the s	ystem nee	eds to save the	ne curre	nt context	of the
	process curre	ently runnin	g on the	CPU to re	store that con	ntext wh	en the proc	essing
is done. The context is represented in the					of the	ne proce	ss; it includ	es the
	value of the		, <u></u>	, and		. 4%		
5.	The benefits	of multithr	eaded pro	ogrammin	g can be brol	cen dow	n into four	major
	categories: 1	,	2	, 3	, 4		4%	
6.	A deadlock	situation	can ar	ise if th	ne following	four	conditions	hold
	simultaneous	sly in a sy	stem: 1.		, 2	·,	3	,
	4	4%						
7.	The binding	of instruction	ons and d	ata to me	mory addresse	es can be	done at an	y step
	along the wa	y:		,	3%			
8.	Consider the	following	four proc	esses, wit	h the length o	of the Cl	PU burst gi	ven in
	milliseconds	: 20%						

<u>Process</u>	Arrival Time	Burst Time	Priority
P1	0	10	3
P2	1	1	1
Р3	2	2	3
P4	3	1	4
P5	4	5	2

- a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, nonpreemptive priority (a smaller priority number implies a higher priority), and RR (quantum = 3). 5%
- b. What is the turnaround time of each process for each of the scheduling algorithms in part a? 5%
- c. What is the waiting time of each process for each of the scheduling algorithms in part a? 5%
- d. Which of the algorithms in part a results in the minimum average waiting time (over all processes)? 5%
- 9. a. Explain the difference between internal and external fragmentation. 5%
 - b. What is the purpose of paging the page tables? 5%