
ii~ = 213 lii.TI:~::k!J 1o3 *~ll~±mm~::~J~ ~ 6 Jr . ~ 1 Jr

~PJT~JJU : flal~~R~~%--~R~~m
~~f4§ : §tl!Jt~Uff~J.!~~ ~~BWl: 0222 '!ii=J\: I

* ~1:~~5.±~: *~m/fOJ~ffl§tJJ~ 0 ~m-~~~c-t-H'i=~. m-*~m~Et..t.f'F~ff · ~-T§t7t 0

1. [10%] Explain the following term in English. For each term, please use less than 1 00 words.

(a) [2%] Power Wall

(b) [2%] GPGPU

(c) [2%] Restartable instruction

(d) [2%] Write-allocate policy

(e) [2%] NUMA

2. [10%] Suppose we have developed new versions of a processor with the following characteristics.

Version Voltage Clock rate

Version 1 1.2 V 810 M1iz
Version 2 1 V 1 Gliz

(a) [5%] How much has the dynamic power been reduced if the capacitive load does not change?

(b) [5%] Assuming that the capacitive load ofversion 2 is 80% the capacitive load of version 1, find the

voltage for version 2 if the dynamic power of version 2 is reduced by 20% from version 1.

3. [5%] Translate the following C code to MIPS instructions. Assume that the variables c and dare assigned to

registers $sO and $sl, respectively. Assume that the base address of the arrays A and Bare in registers $s6

and $s7, respectively.

c = d- A[B[2]];

4. [5%] What decimal number does the following bit pattern represent if it is a floating point number? Use the

IEEE 7 54 standard.

101011111011010000000000

5. [20%] Assume an instruction pipeline for a high-speed, load/store processor with the following instruction

classes

ALU ALUop Rdst, Rsrc 1, Rsrc2

ALUimmediate ALUiop Rdst, Rsrc 1, imm

Load MEMop Rdst, n(Rsrc)

Store Memop n(Rsrc2), Rsrc1

Conditional branch BRop Rsrc 1, Rsrc2, offset

Jumps JMP Rdst

Each instruction takes one machine word. The only memory-addressing mode supported is base register plus

a signed offset. Conditional branches compare the two branch source operand values using the ALU. The

branch target address is computed on a separate address generation adder contained in the control unit of the

machine. Register file writes occur in the first half of a cycle and register file reads occur in the second hal£

c~ooiiD~mEJ · ~niUif'F~)

~~ : 213 ~~~*· 103 -~llUl±IJfm~~~· # 6 J[' ~ 2 J[

~.Pff~f.UJU : ~fJJlgR~~it-Jlgft~:ffi
:::iJ~f4§ : gf•t~~~!M~~ ~~ali'3: 0222 • an=x: 1

* :::iJ§::g~5.±~ : *~JHFFOJ~fflgt-~ o *~m-~~;ffi<-FH'F~ · ~**itm~!Lt1'F~~ · /Grgt5J o

The machine uses virtual memory address, with separate instruction and data TLBs. It also has a physical

addressed (tagged) direct mapped L1 Icache and a physically addressed set associate L1 Dcache (Accesses

that miss in the L1 cache cause the instruction pipeline to stall.) The ALU used during the EX cycle is

pipelined and takes one cycle to complete an addition/subtraction/logical operations and two cycles to

complete a multiplication. The time taken by the key components (that already includes the pipeline register

write time, the interconnect delay, and any necessary multiplexors) is as follows:

I o D TLB access 1 ns

Icache access

Instruction decode

Address adder

Dcache access

ALU pipe stage

RegFile read/write

2 ns

1 ns

1 ns

2 ns

2 ns

2 ns per 2 port access (e.g. a 2-read and 2-write port RegFile takes 2

ns, a 4- read-4 write port RegFile takes 4 ns, etc.)

Answer the following questions about your pipeline.

(a) [7%] Draw the shortest possible instruction pipeline (i.e. the pipeline with the fewest stages) while

ensuring that there are no structural hazards. For your pipeline, give a name for each stage along with a

short description of what activities occur during that stage.

(b) [3%] What is its clock rate?

(c) [5%] Give a MIPS instruction example oftwo different data hazards that can be solved by forwarding

(both data hazards should be different in that the forwarding is handled from different pipeline register

stages). For each, explain which data are forwarded.

(d) [5%] Give a MIPS instruction example of two different data hazards that cannot be solved by

forwarding. For each, indicate how many stalls are incurred before the hazard is resolved.

6. [10%] Consider the following page reference string:

{1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6}.

(a) [5%] In the LRU page-replacement algorithm, how many page faults would occur when we have 'one',

'two', 'three' page frames? Please indicate the number of page faults individually.

Assume that all frames are initially empty, and therefore your first access to each unique page will cause

one fault.

(b) [5%] In the optimal page-replacement algorithm, how many page faults would occur when we have

'one', 'two', 'three' page frames? Please indicate the number of page faults individually.

Assume that all frames are initially empty, and therefore your first access to each unique page will cause

one fault.

~~: 213

~.Ptr~JJu = ~t~-~fl~~1C-•~fl~m
~~f-t 13 = §tW:t~~il.~w~m ~~stm : 0222 • ~::x : 1

* ~~~~)1:~ = ::tgJt~::fOJf~J~§tW:t~ 0 ~~~~:ffic--FH'F~ · ~*~m~I£J::ft~:fj · ::f-T§t7t 0

7. [10%] Choose the correct answers for each of the following 5 questions.

(a) [2%] The Banker's Algorithm is proposed to support the technique of:

(1) deadlock detection

(2) deadlock recovery

(3) deadlock avoidance

(4) deadlock identification

(b) [2%] For two processes accessing a shared variable, Peterson's algorithm must satisfy:

(1) semaphores

(2) mutual exclusion

(3) synchronization

(4) progress

(5) bounded-waiting

(c) [2%] Indefinite blocking may occur if we add and remove processes from the list associated with a

semaphore in order.

(1) first in, first out

(2) first in, last out

(3) last in, first out

(4) last in, last out

(d) [2%] A CPU-bound process ___ _

(1) infrequently requests I/0 operations and spends more of its time performing computational work

(2) frequently requests I/0 operations and spends more of its time performing computational work

(3) infrequently requests I/0 operations and spends less of its time performing computational work

(4) frequently requests I/0 operations and spends less of its time performing computational work

(e) [2%] increases CPU utilization by organizing jobs (code and data) so that the CPU always

has one to execute.

(1) Multithreading

(2) CPU scheduling

(3) Swapping

(4) Multiprogramming

t;.I\HJ}f: 213 IIJTI:P.JGJ~J:k•to3 •~llm±mm~~~~ :tt 6 :a.~ 4 :a
~FJT~JJU : ~fljlgR~~it-jlgR~R?
~~f4§ : ~fl\Jfl~~~~~ ~Hii:BWl: 0222 • rp:_x: I

* ~~gJi5±~: 2$:~Jm~PJf~ffl~t:JJ~ o g~m-~~~<-*H'F~ · m-2$:~Jm~lt.t1'F~tl, /f.:Y~t5t o

8. [15%] To create a new process from processes, the multitasking operating systems such as Unix-like

systems provide a "fork" system call. The fork function will create a copy of itself to a child process, and

then other programs are executed in the child process.

(a) [5%] In the following example with the fork function, how many lines of"NCKU" will be shown in the

console?

int main(int agrc, char * * argv)
{

}

inti;
for (i=O;i<5;i++)
{

fork();
}
printf("NCKU\n ");
return 0;

(b) [5%] In the following example with the fork function, how many lines of"NCKU" will be shown in the

console?

int main(int agrc, char **argv)
{

}

inti;
for (i=O;i<l O;i++)
{

}

printf("NCKU\n");
fork();

return 0;

(c) [5%] In the following example with the fork function, what content will be printed in the console?

int main(int agrc, char **argv)
{

}

int x=O, i=O;
for(i=O;i<3 ;i++)
{

fork();
x=x+5;

}
printf("x = %d\n", x);
return 0;

~51Jf: 213 ii1LRWJ:;k.t03 -~.trifi±:JHm~~~ :# 6 :a'~ 5 :a
~?n~Bu = ?lf!jlnt~~.Jt-jlgft~m

~gitf4§ : §tlff!~f,f!VM~~ ~~aM= 0222 • ~=x = 1

* ~~§n).±g : *~m:foH~m§tlf~ o ~~~~~<-F)f'F~ · ~*~m~a_tf'F~* · /f.:Y§t5t 0

9. [15%] The following implementation in Java is created for a specific system utility.

(a) [7%] Could you figure out what is the system utility that can be provided from 'Manager' class? Please

also simply discuss its corresponding methodology.

(b) [8%] Consider 'Manager' is used in the multi-threading mode. Is the implementation logically risky? If

it is risky, please clearly point out those incorrect methods or lines, and also revise the code (written in

Java). If it is not risky, please clarify your answer.

public interface ObjA
{

}

/*check if the object is expired*/
public boolean isExpired();
/*return the key in the string type*/
public String getldentifier();

1
2
3

public class Manager {

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 }

private static java.util.HashMap map= new java.util.HashMap();
private static Object lock= new Object(); I* This object 'lock' can act as a semaphore *I

static {I* The following code will create a background thread invoked periodically *I
try{

Thread th _1 = new Thread(new Runnable() {
int sleepTime = 5000;
public void run() {

try {
while (true) {I* Sets up an infinite loop */

}

I* An iterator is used to look through all objects *I
java.util.Iterator keys= map.keySet().iterator();
while (keys.hasNext()) {

}

I* Retrieve each individual key *I
String key= (String) keys.next();
ObjA value= (ObjA) map.get(key);
if (value.isExpired()) {

map.remove(key);

Thread.sleep(sleepTime); I* thread will sleep 5000 ms*l

} catch (Exception e) {
e.printStackTrace();

}
} I* End of the run method *I

}); I* End of the thread code *I

th_l.start(); I* Starts the thread*/
} catch (Exception e) {

e.printStackTrace();
}

} /*End static block *I

I* put object into the map *I
public static void putObjA(ObjA object) {

map.put(object.getldentifier(), object);
}
I* return the object if the key is found in the map */
public static ObjA getObjA(String identifier) {

}

ObjA obj =null;
I* 'synchronized(lock)' can ensure that no more than one thread can lock the object

'lock' simultaneously *I
synchronized (lock) {

obj = (ObjA) map.get(identifier);
}
if (obj == null)

return null;
if (obj .isExpired()) {

map.remove(identifier);
return null;

} elst: {
return obj;

}

~~BWl : 0222 • afi=jz : I

