編號: 214	國立成功大學 103 學年度碩十班招生考試試顯	±

系所組別:電機資訊學院-資訊聯招

考試科目:程式設計

考試日期:0222,節次:2

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Part I.

資料結構 (50%)

1. Answer True or False for the following statements. Give correct answers for False statements. (20%)

- (1) Let G be a graph with e edges and v vertices. If G is represented by adjacency lists, DFS requires $O(v^2)$ time.
- (2) If an AOV network represents a feasible project, its topological order is unique.
- (3) In static hashing, the worst-case number of comparisons needed for a successful search is O(n) for open addressing. The number could be reduced to $O(\log n)$ by using chaining method.
- (4) Let d_i be the degree of vertex *i* in a graph *G* with |V| = n and |E| = e, then $e = \sum_{i=0}^{n-1} d_i$.
- (5) The path from vertex u to vertex v on a minimal cost spanning tree of an undirected graph G is also a shortest path from u to v.

2. Given the following 8 runs: (15%)

7	10	23	2	6	4	16	12
13	18	28	15	11	20	17	21
22	29	32	19	24	30	31	25

- (1) Draw the corresponding winner tree.
- (2) Draw the restructured winner tree after one record has been output.
- (3) Draw the loser tree based on the answer of question (2).
- (4) Derive the total required time to merge n records through a winner tree with k runs.
- 3. Consider the following AOE network: (15%)

- (1) Obtain e(i) and l(i) for all activity *i*.
- (2) List all critical activities.
- (3) List all critical paths.

(背後仍有題目, 請繼續作答)

編號: 214	4 國立成功大學 103 學年度碩士班招生考試試題 共 2 頁, 第 2 頁
系所組別	:電機資訊學院-資訊聯招
考試科目	:程式設計 考試日期:0222,節次:2
※ 考生記	清注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
	Part II.
	演算法 (50%)
1.	Answer True or False for the following statements. Give correct answers for False statements. (20%)
	(1) If P equals NP, then NP equals NP-complete.
	(2) Any <i>n</i> -node unbalanced tree can be balanced using $O(logn)$ rotations.
	(3) Let A_1 , A_2 , and A_3 be three sorted arrays of <i>n</i> real numbers (all distinct). In the comparison model,
	constructing a balanced binary search tree of the set $A_1 \cup A_2 \cup A_3$ requires $\Omega(n \log n)$ time.
	(4) Let F be a shortest path from some vertex's to some other vertex t in a graph. If the weight of each edge in the graph is increased by one. P remains a shortest path from s to t
	(5) We can claim that there is a simpler way to reweight edges than the method used in Johnson's algorithm.
	Letting $w^* = \min_{(u,v) \in E} \{w(u,v)\}$, just define $\widehat{w}(u,v) = w(u,v) - w^*$ for all edges $(u,v) \in E$.
2.	Give a tight asymptotic upper bound (O notation) on the solution to the following recurrence. (10%)
	$\pi(\cdot) \left(16T\left(\frac{n}{2}\right) + \Theta(1) \ if \ n^2 > M,\right)$
	$I(n) = \begin{cases} 0 \\ M \end{cases} \text{if } n^2 \leq M; \end{cases}$
3.	Prove that the longest increasing subsequence problem can be reduced to the edit distance problem. (10%)
	Edit distance problem:
	Input: Two sequences A and B and the cost for operations substitution (C _s), insertion (C _i), and deletion (C _d)
	Output: The minimum cost sequence of edit operations to transform A into B.
	Longest increasing subsequence problem:
	Input: A sequence S.
	<i>Output</i> : The longest sequence of positions $\{p_1, p_2,, p_k\}$ such that $p_i < p_{i+1}$ and $S_i < S_{i+1}$.
4.	Consider the linear-programming system with 9 different constraints $x_1 - x_5 \le -5$, $x_1 - x_4 \le -2$, $x_2 - x_1 \le -5$
	$-3, x_2 - x_3 = 8, x_3 - x_1 \le 5, x_3 - x_5 \le 2, x_4 - x_3 \le -3, x_5 - x_1 \le 6, x_5 - x_4 \le 1$, (1) Draw the constraint
	graph for these constraints. (2) Solve for the unknowns x_1, x_2, x_3, x_4 , and x_5 or explain if no solution exists. (10%)