編號: 215

國立成功大學 103 學年度碩士班招生考試試題

共 2 頁,第1頁

系所組別: 電機資訊學院-資訊聯招

考試科目:應用電子學

考試日期:0222,節次:2

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. For the following diode circuit. Let $V_{\gamma} = 0$, $v_I = V_s \sin((2\pi/60) \cdot t)$, where t is time in second and $V_s = 10 \text{ V}$. (a) Calculate v_o and plot v_o versus v_I (10%); (b) Calculate i_I and plot i_I as a function of time over at least one cycle of signal (10%).

2. For the following circuit with circuit parameters $V^+ = 5 \text{ V}$, V = -5 V, $R_S = 4 \text{ k}\Omega$, $R_D = 2 \text{ k}\Omega$, $R_L = 4 \text{ k}\Omega$, and $R_G = 50 \text{ k}\Omega$. The transistor parameters are: $K_P = 1 \text{ mA/V}^2$, $V_{TP} = -0.8 \text{ V}$, and $\lambda = 0$. (a) As $v_i = 0$, plot the equivalent circuit and find I_{DQ} , V_{SGQ} , $V_{SD(SAT)}$. (12%) (b) As $v_i = V_s \sin(\omega t)$, where t is time and $V_s \neq 0 \text{ V}$, plot the small-signal equivalent circuit, and calculate g_m , small-signal gain $A_v = V_o/V_i$, and input resistance R_i (18%).

編號: 215

國立成功大學 103 學年度碩士班招生考試試題

共 2 頁,第2頁

系所組別:電機資訊學院-資訊聯招

考試科目:應用電子學

考試日期:0222, 節次:2

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

3. For the following circuit with parameters of the transistor: $\beta = 100$, $V_{BE(ON)} = 0.7$ V, Early voltage $V_A = \infty$. (a) As $v_s = 0$, plot the equivalent circuit and find I_B , I_C , I_E , and V_{CE} . (10%) (b) As $v_s = V_s \sin(\omega t)$, where t is time, input signal frequency is in the range of lower frequency, and $V_s \neq 0$ V, assuming that the impedance of C_{CI} and C_{C2} may be neglected, plot the small-signal equivalent circuit, and calculate r_π , g_m , and small-signal gain $A_v = v_o/v_s$, and input resistance R_i (15%). (c) Describe the effect of capacitance on the amplifier circuit if both C_{CI} and C_{C2} were not be neglected. (5%)

4. For the following circuit, (a) What are the characteristics for an op-amp required to be considered as ideal? (3%); (b) Calculate the transfer function (4%). (c) If the input signal is with an angular frequency of ω, derive the frequency of oscillation (8%) and ratio of R₂/R₁ (5%) that may eliminate the imaginary part of the transfer function.

