※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

1．For the following diode circuit．Let $V_{\gamma}=0, v_{l}=V_{s} \sin ((2 \pi / 60) \cdot t)$ ，where t is time in second and $V_{s}=10 \mathrm{~V}$ ． （a）Calculate v_{o} and plot v_{o} versus $v_{l}(10 \%)$ ；（b）Calculate i_{I} and plot i_{l} as a function of time over at least one cycle of signal（ 10% ）．

2．For the following circuit with circuit parameters $V^{+}=5 \mathrm{~V}, V=-5 \mathrm{~V}, R_{\mathrm{S}}=4 \mathrm{k} \Omega, R_{\mathrm{D}}=2 \mathrm{k} \Omega, R_{\mathrm{L}}=4 \mathrm{k} \Omega$ ，and $R_{\mathrm{G}}=50 \mathrm{k} \Omega$ ．The transistor parameters are：$K_{P}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{T P}=-0.8 \mathrm{~V}$ ，and $\lambda=0$ ．（a）As $v_{i}=0$ ，plot the equivalent circuit and find $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{SGQ}}, \mathrm{V}_{\mathrm{SD}(\mathrm{SAT})}$ ．（12\％）（b）As $v_{i}=V_{s} \sin (\omega t)$ ，where t is time and $V_{s} \neq 0 \mathrm{~V}$ ， plot the small－signal equivalent circuit，and calculate g_{m} ，small－signal gain $A_{\nu}=V_{d} / V_{i}$ ，and input resistance R_{i} （18\％）．

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

3．For the following circuit with parameters of the transistor：$\beta=100, \mathrm{~V}_{\mathrm{BE}(\mathrm{ON})}=0.7 \mathrm{~V}$ ，Early voltage $\mathrm{V}_{\mathrm{A}}=\infty$ ． （a）As $v_{s}=0$ ，plot the equivalent circuit and find $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{E}}$ ，and $\mathrm{V}_{\mathrm{CE}} .(10 \%)$（b）As $v_{s}=V_{s} \sin (\omega t)$ ，where t is time，input signal frequency is in the range of lower frequency，and $V_{s} \neq 0 \mathrm{~V}$ ，assuming that the impedance of $C_{C 1}$ and $C_{C 2}$ may be neglected，plot the small－signal equivalent circuit，and calculate r_{π}, g_{m} ，and small－signal gain $A_{v}=v_{o} / v_{s}$ ，and input resistance $R_{i}(15 \%)$ ．（c）Describe the effect of capacitance on the amplifier circuit if both $C_{C 1}$ and $C_{C 2}$ were not be neglected．（5\％）

4．For the following circuit，（a）What are the characteristics for an op－amp required to be considered as ideal？ （ 3% ）；（b）Calculate the transfer function（4\％）．（c）If the input signal is with an angular frequency of ω ， derive the frequency of oscillation（ 8% ）and ratio of $\mathrm{R}_{2} / \mathrm{R}_{1}(5 \%)$ that may eliminate the imaginary part of the transfer function．

