編號:	217 國立成功大學 103 學年度碩士班招生考試試題	共2頁,第1頁
系所組	別:電機資訊學院-資訊聯招	
考試科	·目:計算機數學	考試日期:0222,節次:3
※考生	主請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上	生作答者,不予計分。
	Linear Algebra (50%)	
1. N	Aatrix calculation.	
(a) Given $\mathbf{A} = \begin{bmatrix} 1 & 5 & 12 \\ 1 & 5 & -2 \\ 1 & -4 & 2 \end{bmatrix}$. Find the Gram-Schmidt <i>QR</i> factorization	n of A . (10%)
(b) Given $\mathbf{A} = \begin{bmatrix} 10 & 5 \\ -11 & 2 \\ -2 & 14 \end{bmatrix}$. Find a singular value decomposition of \mathbf{A} . (10%)
2. I	Let $\mathbf{A}=(a_{ij})$ be an $n imes n$ matrix with eigenvalues $\lambda_1,\lambda_2,\cdots,\lambda_n.$	
(a) Show $\prod_{i=1}^{n} \lambda_i = det(\mathbf{A}).$ (5%)	
(b) Show $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii}$. (5%)	
(c) Suppose \mathbf{A}_r is the matrix formed by deleting the last $n-r$ rows and converse we also assume \mathbf{A} is symmetric and $\lambda_i > 0$ for $i = 1, \ldots, n$. Show $det(\mathbf{A}_r) > 0, r = 1, \ldots, n$. (10%)	olumns of A. And
3. 1	Find the curve $y = C(-1)^{x} + D(2)^{x}$, which gives the least squares fit (0), (1,4), (2,6). (10%)	to points $(x, y) =$
二、C	Discrete Mathematics (50%)	
4. (2	0%) Don't just write down the answer without explanations.	
(a) Determine the number of paths in the xy-plane from (m,n) to (p,q), m,n,p,q \in positi n <q, (x,y)="" <math="" each="" going="" individual="" is="" made="" of="" one="" path="" right="" steps="" such="" the="" to="" unit="" up="" upward="" where="">\rightarrow (x,y+1). (5%)</q,>	ve integer or zero, m <p, : (x,y) \rightarrow (x+1,y) or one unit</p,
(b) If (m,n)=(0,0), (p,q)=(7,4), how many of the paths in part (a) do not use the path from (4,3)? (5%)	m (2,2) to (3,2) to (4,2) to
(c) If (m,n)=(0,0), (p,q)=(7,4), how many of the paths in part (a) do not pass through the (3,4)? (5%)	e points (0,1), (1,2), (2,3),
. (d) If an additional type of move (x,y) \rightarrow (x+1,y+1) is allowed, how many of the paths in (p,q)=(7,4)? (5%)	part (a) if (m,n)=(0,0),
1		

(背面仍有題目,請繼續作答)

編號: 217	國立成功大學 103 /	學年度碩士班招生考試試題	共2頁,第2頁
系所組別:電	機資訊學院-資訊聯招		
考試科目:計	算機數學		考試日期:0222,節次:3
※ 考生請注意	意:本試題不可使用計算機。	請於答案卷(卡)作答,於本試題紙上	作答者,不予計分。

- 5. (20%) Don't just write down the answer without explanations.
 - (a) If the cost of each edge is given, determine the cost of the minimum spanning tree in the following figure? (5%)

(b) How many different spanning trees in the following figure?(5%)

(c) How many different spanning trees in the following figure? (10%)

- 6. (10%) Find a formula for the convolution of each of the following pairs of sequences where *n* belongs to integers.
 - (a) $a_n = 1, 0 \le n \le 5, a_n = 0$, for all $n \ge 6$; $b_n = n$, for all $n \ge 1$ (5%)
 - (b) $a_n = (-1)^n$, $b_n = (-1)^n$, for all $n \ge 1$ (5%)