※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
－．Linear Algebra（50\％）
1．Matrix calculation．
（a）Given $\mathbf{A}=\left[\begin{array}{ccc}1 & 5 & 12 \\ 1 & 5 & -2 \\ 1 & -4 & 2\end{array}\right]$ ．Find the Gram－Schmidt $Q R$ factorization of $\mathbf{A} .(10 \%)$
（b）Given $\mathbf{A}=\left[\begin{array}{cc}10 & 5 \\ -11 & 2 \\ -2 & 14\end{array}\right]$ ．Find a singular value decomposition of A．（10\％）

2．Let $\mathbf{A}=\left(a_{i j}\right)$ be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ ．
（a）Show $\prod_{i=1}^{n} \lambda_{i}=\operatorname{det}(\mathbf{A})$ ． 5% ）
（b）Show $\sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} a_{i i}$ ．（5\％）
（c）Suppose \mathbf{A}_{r} is the matrix formed by deleting the last $n-r$ rows and columns of \mathbf{A} ．And we also assume \mathbf{A} is symmetric and $\lambda_{i}>0$ for $i=1, \ldots, n$ ．
Show $\operatorname{det}\left(\mathbf{A}_{r}\right)>0, r=1, \ldots, n .(10 \%)$

3．Find the curve $y=C(-1)^{x}+D(2)^{x}$ ，which gives the least squares fit to points $(x, y)=$ $(0,0),(1,4),(2,6) .(10 \%)$

二．Discrete Mathematics（50\％）

4．（20\％）Don＇t just write down the answer without explanations．
（a）Determine the number of paths in the xy－plane from (m, n) to $(p, q), m, n, p, q \in$ positive integer or zero，$m<p$ ， $n<q$ ，where each such path is made up of individual steps going one unit to the right $(x, y) \rightarrow(x+1, y)$ or one unit upward $(x, y) \rightarrow(x, y+1)$ ．（5\％）
（b）If $(m, n)=(0,0),(p, q)=(7,4)$ ，how many of the paths in part（a）do not use the path from $(2,2)$ to $(3,2)$ to $(4,2)$ to $(4,3) ?(5 \%)$
（c）If $(m, n)=(0,0),(p, q)=(7,4)$ ，how many of the paths in part（a）do not pass through the points $(0,1),(1,2),(2,3)$ ， （3，4）？（5\％）
（d）If an additional type of move $(x, y) \rightarrow(x+1, y+1)$ is allowed，how many of the paths in part（a）if $(m, n)=(0,0)$ ， $(p, q)=(7,4) ?(5 \%)$
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

5．（20\％）Don＇t just write down the answer without explanations．
（a）If the cost of each edge is given，determine the cost of the minimum spanning tree in the following figure？（5\％）

（b）How many different spanning trees in the following figure？（5\％）

（c）How many different spanning trees in the following figure？（ 10% ）

6．（ 10% ）Find a formula for the convolution of each of the following pairs of sequences where n belongs to integers．
（a）$a_{n}=1,0 \leq n \leq 5, a_{n}=0$ ，for all $n \geq 6$ ； $b_{n}=n$ ，for all $n \geq 1(5 \%)$
（b）$a_{n}=(-1)^{n}, b_{n}=(-1)^{n}$ ，for all $n \geq 1(5 \%)$

