系所組別：電機資訊學院－資訊聯招

考試科目：程式設計
考試日期：0211，節次：2
第1頁，共3頁
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。 ——Data Structures（50\％）

1．（20\％）
Given a red－black tree in the following figure．

After one node with value 778 is inserted，the resulting red－black tree is shown as follows．

（a）（10\％）Please describe the operation procedures for this insertion．
（b）（ 10% ）Please indicate the color and value of node A and node B ，respectively．

2．（10\％）Given the expression，$(x+y)^{*} w+u /\left(v+x^{*} w\right)+z$ ，Please show the content in the stack after the operand v is read in postfix transformation．

3．（20\％）
（a）（10\％）Please finish the lost code for the choose function in the following Dijkstra shortest path implementation for a graph without negative－weight edges．

第2頁，共3頁

```
void shortestPath(int v, int cost[][MAX_VERTICES], int distance[], int n, short int found[])
{/*cost is the adjacency matrix*/
    int i,u,w;
    for (i=0; i<n; i++) {
        found[i] = FALSE;
        distance[i] = cost[v][i];
    }
    found [v]= TRUE;
    distance[v]= 0;
    for (i=0; i<n-2; i++){
    u=choose(distance, n, found);
    found[u]= TRUE;
    for (w=0;w<n;w++)
        if (!found[w])
            if (distance[u]+cost[u][w] < distance[w])
                distance[w]=distance[u]+cost[u][w];
    }
}
int choose (int distance[], int n, short int found[])
{
    int i, min, minpos;
    min = INT_MAX;
    minpos=-1;
```

 return minpos;
 \}
（b）（10\％）In a directed graph without a cycle of negative length but with a negative－length edge，we can implement Bellman－Ford algorithm as follows to compute shortest paths．Please fill in the lost code．
void BellmanFord（int n ，int v ）\｛
for（int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$ ）
distance $[\mathrm{i}]=\operatorname{cost}[\mathrm{v}][\mathrm{i}]$ ；
for（int $k=2 ; k<=n-1 ; k++$ ）
for（ \qquad ）
for
if（distance［u］＞distance［i］＋cost［i］［u］）
distance［u］＝distance［i］＋cost［i］［u］；

系所組別：電機資訊學院－資訊聯招

考試科目：程式設計

第3頁，共3頁

二，Algorithms（50\％）

4．(10%) Prove or disprove：The single－source shortest paths problem can be solved in linear time in directed acyclic graphs．
5．（15\％）The matrix－chain multiplication problem can be stated aš follows：Given a chain $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of n matrices， where for $i=1,2, \ldots, n$ ，matrix A_{i} has dimension $p_{i-1} \times p_{i}$ ，fully parenthesize the product $A_{1} A_{2} \cdots A_{n}$ in a way that minimizes the number of scalar multiplications．Suppose that you have 6 matrices：A_{1} has dimension $30 \times 35, A_{2}$ has dimension $35 \times 15, A_{3}$ has dimension $15 \times 5, A_{4}$ has dimension $5 \times 10, A_{5}$ has dimension $10 \times 20, A_{6}$ has dimension 20×30 ．Please calculate the minimum number of scalar multiplications．

6．（ 10% ）Give asymptotic upper and lower bounds for $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}$ ．Assume that $T(n)$ is constant for $n \leq 2$ ． Make your bounds as tight as possible．

7．(15%) Consider the problem of finding the 5 －vector $x=\left(x_{i}\right)$ that satisfies

$$
\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
-1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \leq\left(\begin{array}{c}
0 \\
-1 \\
1 \\
5 \\
-4 \\
-1 \\
-3 \\
-3
\end{array}\right)
$$

Determine whether there exists a solution or there is no solution．

