編號: 213

國立成功大學 105 學年度碩士班招生考試試題

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學

考試日期:0227,節次:3

第1頁,共2頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Give a geometric explanation of why a homogeneous linear system consisting of two equations in three unknowns must have infinitely many solutions. (5%)
- 2. For each of the statements that follow, answer true if the statement is always true and false otherwise. In the case of a true statement, explain or prove your answer. In the case of a false statement, give an example to show that the statement is not always true. Assume that all the given matrices are $n \times n$. (10%)
 - (a) det(AB) = det(BA)
 - (b) det(A+B) = det(A) + det(B)
 - (c) det(cA) = c det(A)
 - (d) $det((AB)^T) = det(A) det(B)$
 - (e) det(A) = det(B) implies A = B
- 3. Determine whether the following are subspaces of $R^{2\times 2}$: (10%)
 - (a) The set of all 2×2 lower triangular matrices
 - (b) The set of all 2×2 matrices A such that $a_{11} = 1$
 - (c) The set of all 2×2 matrices B such that $b_{11} = 0$
 - (d) The set of all symmetric 2 × 2 matrices
 - (e) The set of all singular 2×2 matrices
- 4. Let A be an 8×5 matrix of rank 3, and let b be a nonzero vector in $N(A^T)$
 - (a) Show that the system Ax = b must be inconsistent. (5%)
 - (b) How many least squares solutions will there be to the system Ax = b? Explain. (5%)
- 5. For each statement that follows, answer true if the statement is always true and false otherwise. In the case of a true statement, explain or prove your answer. In the case of a false statement, give an example to show that the statement is not always true. (15%)
 - (a) If A is an $n \times n$ matrix, then A and A^T have the same eigenvectors.
 - (b) If A has eigenvalues of multiplicity greater than 1, then A must be defective.
 - (c) If A is a 4×4 matrix of rank 3 and $\lambda = 0$ is an eigenvalue of multiplicity 3, then A is diagonalizable.
 - (d) The rank of an $n \times n$ matrix A is equal to the number of nonzero eigenvalues of A, where eigenvalues are counted according to multiplicity.
 - (e) If A is symmetric positive definite, then A is nonsingular and A^{-1} is also symmetric positive definite.
- 6. For $n \ge 1$, let a_n count the number of ways to write n as an ordered sum of odd positive integers. (For example, $a_4 = 3$ since 4 = 3+1 = 1+3 = 1+1+1+1.) Find and solve a recurrence relation for a_n . (15%)

編號: 213

國立成功大學 105 學年度碩士班招生考試試題

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學

考試日期:0227,節次:3

第2頁,共2頁

7. (a) How many bit strings of length 8 do not contain three consecutive 1s? (10%) (b) What is the probability that a ternary sequences (sequence made up of the digits 0, 1, 2) of length 8 contains even number of 1's bits? (10%)

8. Let p, q be two distinct primes. We denote relation $x\mathbf{R}y$ if x divides y. Under this relation \mathbf{R} , please determine (a) the Hasse diagram of all positive divisors of p^2q^2 , (b) glb $\{pq, p^2\}$, (c) How many edges are there in the Hasse diagram of all positive divisors of p^mq^2 , $m \in Z^+$. (15%)