編號: 212

國立成功大學 106 學年度碩士班招生考試試題

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學

考試日期:0213,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 只有答案,沒有計算過程或說明原因,也不予計分。考卷含線性代數及離散數學

一、線性代數 (50%)

1. (15%) Given A and p, if
$$\lim_{n\to\infty} A^n p = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
. Please find a,b,c,d.

$$A = \begin{bmatrix} 1 & 2/5 & 1/10 & 0 \\ 0 & 3/10 & 1/2 & 0 \\ 0 & 0 & 1/5 & 0 \\ 0 & 3/10 & 1/5 & 1 \end{bmatrix}, p = \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 0 \end{bmatrix}$$

- 2. (10%) Let V be the vector space R³. Determine if U is a subspace of V if U contains the following vectors.
 - (a) $U=\{(x,y,z):x<0\}$
 - (b) $U=\{(x,y,z):x+y+z=3\}$
 - (c) $U = \{(x,y,z): x=2z\}$
- 3. (10%) Let $U=R^n$ and $V=\{(x_1,x_2,...,x_n)\in U\,|\,x_1+x_2+...+x_n=0\}$, please find a basis of V over R
- 4. (15%) Let $T:P_2(R) \rightarrow P_2(R)$ be a linear operator that is defined according to

 $T(g(x)) = g(x) + x \frac{dg(x)}{dx} + \frac{dg(x)}{dx}$, in which P₂(R) is a set of all polynomials with real-value coefficients

and degree n, n=0,1,2. Please find the eigenvalues and the associated eigenvectors of the operator $5T+2T^2+T^{10}$

編號: 212

國立成功大學 106 學年度碩士班招生考試試題

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學 考試日期:0213,節次:3

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- =. Discrete Mathematics (total: 50%)
 - 5. In how many ways can 36 identical robots be assigned to five assembly lines with
 - (a) at least four robots assigned to each line? (5%)
 - (b) at least four, but no more than ten, assigned to each line? (5%)

(no score if you give no details.)

6. Let
$$D = \begin{bmatrix} 2 & -1 & & & & & \\ -1 & 2 & -1 & & 0 & & \\ & -1 & 2 & \ddots & & \\ & & -1 & \ddots & -1 & \\ & 0 & & \ddots & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$
, i.e., $D(i,j) = \begin{cases} 2, & \text{if } i = j. \\ -1, & \text{if } |i-j| = 1. \\ 0, & \text{elsewhere.} \end{cases}$

- (a) Use recurrence relations to express determinant of D, i.e., |D|. (5%)
- (b) Find the general solution for $|D_n|$. (5%)

(c)
$$|D_1| = 2, |D_2| = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3$$
. Find $|D_{100}|$. (5%)

(no score if you give no details.)

- 7. Solve the following recurrence relations: $6a_n 5a_{n-1} + a_{n-2} = \sin(n\pi)$ with $a_0 = 1, a_{-1} = a_{-2} = 0$. (10%)(no score if you give no details.)
- 8. Let (Q, \oplus, \otimes) denote the **field**, where \oplus and \otimes are defined by $a \oplus b = a + b k$, $a \otimes b = a + b (ab/m)$, for fixed elements $k, m \neq 0$ of Q. Determine the values for k and m in each of the following:
 - (a) The zero element for the field is 5. (5%)
 - (b) The additive inverse of the element 8 is -7. (5%)
 - (c) The multiplicative inverse of 3 is 1/6. (5%)

(no score if you give no details.)