BINLREEIARER

1102 R LI 4 Z el

.
S

#

I

E
=

2
ﬁﬂ:

&

200

- EREAEN- B
- BT EARH S L4t
0202

LB 1A

D AEEAETRR

EEE: 200 BIITRRIIARER 110 BB FE L TS HEE

% 7 ERERER- AR

H R E ST ERREAE ' 5B 0202 87 1
EAN=e =)

XEATEE | S - SHER TR « BRERECRES - RNASURE LS FTHE -

1. [50%] Convolution neural networks (CNNs) have been widely adopted in many different application
domains. Nevertheless, as CNNs incur high computation overhead and large memory footprint, it is
an important task to customize the designs of embedded processors so as to meet the timing
constrains required by target applications. Among other types of computations, matrix operations are
time-consuming functions in CNNs and are important targets for hardware and software
optimizations to facilitate the CNN computations on such platforms. Given the partial C code for the
convolution operations, there are three N-by-N matrices (A, B, and C), and they keep double-
precision floating-point numbers (each number is eight bytes). Please answer the following questions
related to processor designs and software optimizations.

for (int x = 0; x < N; ++x)
for (inty=0; y < N; ++y)
for (intz=0;z < N; z++)
Clx+y*N] += Alx+z*N] * B[z+y*N]; (a)

(1) [5%)] Please write down the MIPS assembly code for the C statement (a). NOTE: Assume that
the variables, C[x+y*N], A[x+z*N], B[z+y*N], have already been loaded into the CPU registers,
$f4, $£6, and $18, respectively.

(2) [5%] Which datapath(s) of the target CPU should be optimized if we want to accelerate the
computation speed of above operations?

(3) [5%) Sometimes, embedded processors may not have the hardware support of floating-point
operations. On such embedded platforms, the floating-point operations could be emulated by a
software implementation of the floating-point operations (as library routines) or by integer
operations. What is the technique of the floating-point emulation with integer operations?

(4) [5%)] Continue with the above question. Which one of the two emulation techniques is better for
computation efficiency?

(5) [10%] On a single-core embedded processor, which type of instructions is often supported by
the embedded processor to take advantage of the data-level parallelism found in the above
example code? Please rewrite the above code into the version with such type of instructions.

(6) [5%)] When N is 64, what is the smallest L1 data cache size, which can accommodate the data
of all three matrices and provide no cache conflicts? NOTE: The cache should be sized in powers
of 2.

(7) [5%)] Usually, to ensure the matrix elements ¢an fit in the cache enjoying spatial and temporal
locality, it is a common practice to rewrite the code into the blocked version so that the
computations are done within submatrices. Please determine the maximum matrix size, M, so
that the three submatrices can fit in a 16KB data cache.

S 200 BT RRIHAER 110 B4 R HHEA E

P SEENER-EMEE

B E | STEESEE LG L EHA ¢ 0202 0 8K ¢ 1

H2E - 3oH

[(8) [10%] Continue with the above question. Please rewrite the abave C code into the blocked

version with the calculated M.

2. [50%)] Consider a key-value (KV) storage. A KV pair stored in the storage consists of a constant length of an
alphabetical string as a key, and its associated value is simply a variable-length bit string. The KV
storage provides PUT (x,v) and v=CGET (x) APIs to applications, where PUT (x,v) stores a key-

value pair in the storage with the designated key x and value v, and GET (x) returns the value v,
given the queried key x, previously stored in the KV store. Additionally, SCAN (x1,x2) offered
by the KV storage returns a list of KV pairs such that the keys of the retrieved data items are no less
than x1 and no greater than x2. Let the KV storage be operated in a computer system equipped with
sizes of x volatile memory space and of y persistent storage, where x « y.

Notably, applications may introduce two types of workload patterns to the KV storage. The random
access pattern denotes keys generated by GET (.), PUT(.) and SCAN(.) are random, while the
sequential access represents the scenario that data items are addressed with increasing (or decreasing)
keys. Secondly, GET (.), PUT(.) and SCAN(.) operations can be performed concurrently on the
fly by the KV store. Thirdly, the total storage size of KV pairs stored in the system may be greater
than x, the available volatile memory space as aforementioned. Finally, the KV storage may fail
anytime and support the recovery for committed PUT (.) operations.

Please discuss designs and implementations of operating systems to provide such a KV storage
service, considering to optimize the performance metrics in terms of delays and throughputs in
manipulating GET (.), PUT(.) and SCAN(.) operations. You shall state clearly subject to the
following techniques in order.

(1) [5%] In-memory indexing

(2) [5%] In-disk indexing

(3) [5%] Caching

(4) [5%) Paging

(5) [5%] Batched /O

(6) [5%] Multithreading and thread scheduling
(7) [5%] Shared memory and consistency

(8) [5%] Encoding/Decoding

(9) [5%] File system block layout

(10) [5%] File system compaction

