國立成功大學 110學年度碩士班招生考試試題

編 號: 204

系 所: 電機資訊學院-資訊聯招

科 目:計算機數學

日 期: 0202

節 次:第3節

備 註:不可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

編號: 204

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學

考試日期:0202,節次:3

第1頁,共3頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 一、Discrete Mathematics (50%) (請說明如何求解過程,只寫答案不予計分)
- 1. (10%) (a) Assume that each vertex has a unique id, how many different spanning trees in the following figure? (5%)

:vertex

---:edge

- (b) We can show that the set {(x,y) | x,y are positive integers} is countable by finding a 1-1 mapping from (x,y) to an integer. Given (1,1) -> 1, (1,2)->2, (1,3)->4, (1,4)->7, (2,1)->3, (2,2)->5, (2,3)->8, (3,1)->6, (3,2)->9, (4,1)->10, please find which (x,y) maps to 465? (5%)
- 2. (10%) (a) Please prove that $x^5-2x^4+x^3-2x^2-7x-1=0$ has a solution x which is an integer. (5%)
 - (b) Given a 4x82 grid, each vertex is colored in one of three different colors, please show that we can always find a rectangle with four vertices in the same color. (5%)

國立成功大學 110 學年度碩士班招生考試試題

編號: 204

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學

考試日期:0202,節次:3

第2頁,共3頁

3. (30%) (a) Assume N is a positive integer, please show that the statement "if 2^N -1 is prime, then N is prime" is true using proof by contrapositive. (10%)

- (b) 5*n+7*m=N, where n,m,N are integers and $n\ge 0$, $m\ge 0$, $N\ge 24$. Please show that we can always find n, m to satisfy the equality. For example, (n,m)=(2,2) corresponds to 5*2+7*2=24 and (n,m)=(5,0) corresponds to 5*5+7*0=25. (10%)
- (c)Assume a set G whose elements are real numbers and the size of G is equal to 2^k , where k is a positive integer. We just want to find the maximum value and the minimum value in this set G and develop an algorithm in the following.

FindMaxMin(G)

If G contains only two numbers, then compare these two numbers, set M to be the larger one, and set m to be the smaller one,

Fise

Divide G into two subsets with equal size G1 and G2 Apply FindMaxMin(G1) to get M1 and m1 Apply FindMaxMin(G2) to get M2 and m2 M=max(M1,M2), m=min(m1,m2)

Return M,m

We use T(N) to represent the number of comparisons when the set size is equal to N. $N=2^k$. Please find T(N) in terms of N. (10%)

· .

編號: 204

國立成功大學 110 學年度碩士班招生考試試題

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學

考試日期:0202,節次:3

第3頁,共3頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分

-. Linear Algebra (50%)

4. (10%)

Find the curve $y = C(-2)^x + D(-1)^{x+1}$, which gives the least squares fit to points (x, y) = (0, 0), (1, 4), (2, 6).

5. (30%. 15 pts each)

(a) Given
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
. Find the Gram-Schmidt QR decomposition of A , then use

that decomposition to solve the least squares problem. (15%)

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

(b) Given
$$\mathbf{A} = \begin{bmatrix} 10 & 5 \\ -11 & 2 \\ -2 & 14 \end{bmatrix}$$
. Find the pseudoinverse of \mathbf{A} . (15%)

6. (10%)

Two eigenvectors of this circulant matrix C are $(1, i, i^2, i^3)^T$ and $(1, i^2, i^4, i^6)^T$. What are the eigenvalues λ_0 and λ_1 ?

$$\begin{bmatrix} c_0 & c_1 & c_2 & c_3 \\ c_3 & c_0 & c_1 & c_2 \\ c_2 & c_3 & c_0 & c_1 \\ c_1 & c_2 & c_3 & c_0 \end{bmatrix} \begin{bmatrix} 1 \\ i \\ i^2 \\ i^3 \end{bmatrix} = \lambda_0 \begin{bmatrix} 1 \\ i \\ i^2 \\ i^3 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} c_0 & c_1 & c_2 & c_3 \\ c_3 & c_0 & c_1 & c_2 \\ c_2 & c_3 & c_0 & c_1 \\ c_1 & c_2 & c_3 & c_0 \end{bmatrix} \begin{bmatrix} 1 \\ i^2 \\ i^4 \\ i^6 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ i^2 \\ i^4 \\ i^6 \end{bmatrix}$$