國立成功大學 111學年度碩士班招生考試試題

編 號: 202

系 所: 電機資訊學院-資訊聯招

科 目:計算機數學

日 期: 0219

節 次:第3節

備 註:不可使用計算機

編號: 202

國立成功大學 111 學年度碩士班招生考試試題

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學

考試日期:0219,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

一、離散數學 (50%)

1. (10 points) How many bit string of length 20 contain at most

Nineteen 1s? Please expressed as $A^B + C$

(a)
$$A = ____ (3 \text{ point})$$

(b)
$$B = ___ (3 \text{ points})$$

2. (10 points) Let (u,v) be a minimum-weight edge in a connected graph G. Show that (u,v) belongs to some minimum spanning tree of G.

3. (10 points)
$$A=\{5,6,7,8\}$$
 $B=\{u,v\}$ $C=\{\}$

consider a = |Power Set(A)|

$$b = |A \times B|$$
 (× is cross product)

$$c = |\text{Power Set}(C)|$$

Please calculate $2^c + b + a$.

4. (a) (5 points) How many quadrilateral are determined by the vertices of a regular polygon of n sides? $(n \ge 4)$

(b) (5 points) How many if no side of the polygon is to be a side of any quadrilateral? ($n \ge 8$)

Note: quadrilateral (四邊形)

(10 points) Calculate the chromatic number of figure(a) (5 points) and figure(b) (5 points). (not need to explain)

figure(a)

figure(b)

編號: 202

國立成功大學 111 學年度碩士班招生考試試題

系 所:電機資訊學院-資訊聯招

考試科目:計算機數學

考試日期:0219,節次:3

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分 二. Linear Algebra (50%)

6. Let A be a Hermitian matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$. For any nonzero vector \mathbf{x} in \mathbb{R}^n , the Rayleigh quotient $\rho(\mathbf{x})$ is defined by

$$\rho(\mathbf{x}) = \frac{\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle} = \frac{\mathbf{x}^H \mathbf{A}\mathbf{x}}{\mathbf{x}^H \mathbf{x}}$$

(a) If $x = c_1 u_1 + \cdots + c_n u_n$, show that

$$\rho(\mathbf{x}) = \frac{|c_1|^2 \lambda_1 + |c_2|^2 \lambda_2 + \dots + |c_n|^2 \lambda_n}{\|\mathbf{c}\|^2}$$

(10%)

- (b) Show that $\lambda_n \leq \rho(\mathbf{x}) \leq \lambda_1$. (5%)
- (c) Show that $\max_{\mathbf{x}\neq\mathbf{0}} \rho(\mathbf{x}) = \lambda_1$ and $\min_{\mathbf{x}\neq\mathbf{0}} \rho(\mathbf{x}) = \lambda_n$. (5%)
- 7. Let

$$\|\mathbf{A}\|_F = (\langle \mathbf{A}, \mathbf{A} \rangle)^{\frac{1}{2}} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{\frac{1}{2}} \quad \text{for } \mathbf{A} \in \mathbb{R}^{m \times n}$$

The trace of an $n \times n$ matrix C, denoted tr(C), is the sum of its diagonal entries; that is,

$$tr(\mathbf{C}) = c_{11} + c_{22} + \dots + c_{nn}$$

If A and B are $m \times n$ matrices, show that

- (a) $\|\mathbf{A}\|_F^2 = tr(\mathbf{A}^T \mathbf{A})$ (5%)
- (b) $\|\mathbf{A} + \mathbf{B}\|_F^2 = \|\mathbf{A}\|_F^2 + 2tr(\mathbf{A}^T\mathbf{B}) + \|\mathbf{B}\|_F^2$ (5%)
- 8. Let A be a symmetric $n \times n$ matrix. Show that e^{A} is symmetric and positive definite. (10%)
- 9. Let A be a singular $n \times n$ matrix. Show that $A^T A$ is positive semidefinite, but not positive definite. (10%)