共2頁,第1頁

編號: G 191 系所: 航空太空工程學系配組, 2, 丙, 丁, 医解料目: 工程數學

本試驅是否可以使用計算機: □可使用 • ☑不可使用 (請命題老師勾選)

1. a). Given three vectors

$$\vec{a} = [a_1, a_2, a_3], \vec{b} = [b_1, b_2, b_3], \vec{c} = [c_1, c_2, c_3],$$

compute $\vec{a} \cdot (\vec{b} \times \vec{c})$ and **explain** the geometrical interpretation of the scalar triple product. (7%)

- b). Given the curve: $\vec{r}(t) = t \vec{i} + \cosh t \vec{j}$, $t \in [0,1]$, compute the length of $\vec{r}(t)$ from t = 0 to t = 1, i.e., $\int \sqrt{\vec{r}'(t) \cdot \vec{r}'(t)} dt$, and explain the geometrical meaning of $\vec{r}'(t)$. (7%)
- c). Find the directional derivative of f(x, y, z) = xyz at P(-1,1,3) in the direction of $\vec{a} = \vec{i} 2\vec{j} + 2\vec{k}$. (6%)
- 2. Consider the matrix $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
 - a). What is Cayley-Hamilton theorem? Give a simple example to demonstrate it. (5%)
 - b). $A^{30} = ? (5\%)$
 - c). What is the determinant of A^{30} ? (5%)
 - d). How many linearly independent eigenvectors does matrix A have ? (5%)
 - 3. Evaluate the following integrals:

$$I_1 = \int_0^\infty \frac{\cos ax}{x^2 + 1} dx$$
 and $I_2 = \int_0^\infty \frac{\sin ax}{x^2 + 1} dx$ $(a > 0)$

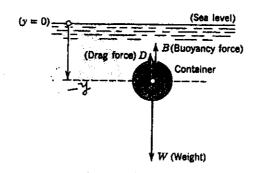
by using the Residue Theorem in the complex variables theory. (20%)

4. Use the Fourier series method to solve the problem: (20%)

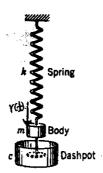
$$u_t = 3u_{xx}$$
 $0 < x < 2, t > 0$

with

$$u(0,t) = u(2,t) = 0,$$
 $t > 0$
 $u(x,0) = 2[1 - \cos(\pi x)],$ $0 < x < 2$


(背面仍有題目,請繼續作答)

編號: 4 191 系所: 航空太空工程學系單組, 2, 天 丁, 多科目: 工程數學


本試題是否可以使用計算機: □可使用 , ☑不可使用 (請命題老師勾選)

- 5. The Newton second law of motion: the equivalent force of mass times acceleration is equal to resulting force of weight, buoyant force, and drag force (say, $ma = \sum$ force).
 - a). A spherical ball of weight 1 [kg] is immerged in water and moving upward. If the buoyancy force is 1 [nt], and the drag force is $D = \alpha \cdot V$, where $\alpha = -0.1$ [nt·s/m] and V is the velocity. The initial velocity is $V_0 = 10$ [m/s], and initial location is at y(0) = -200 [m]. The gravitational acceleration is 9.8 [m/s²]. Find the velocity distribution with respect to time. (10%)

Note: $[nt] = [Newton], 1 [nt] = 1 [kg \cdot m/s^2].$

b). Consider the simplified mass-spring system, with mass m = 1 [kg], spring constant k = 20 [nt/m], the damping constant is c = 4 [kg/s], input force is $r(t) = 0.1 \times \cos(4t)$ [nt]. If the initial location of mass is at y = 0 [m], find the location of the mass with respect to time. (10%)

