編號:	412	國立成功大學一〇一學年度碩士班招生考試試題	共 2 頁 [,] 第 頁	Ŧ
系所組別	: 經濟學系			
考試科目	: 統計學		考試日期:0226,節次:	1

- 1. **Discuss** the effect of the following phenomena on the unbiasedness and the variance of the OLS estimator. (20%) [Your score depends on how completeness your answer is.]
 - a) Heteroskedasticity
 - b) Including an irrelevant variable
 - c) Omitting a relevant variable.
 - d) Multicollinearity
- 2. Suppose that you want to estimate the following relation:

 $Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i \quad (\text{Model 1})$

Note: All the classical assumptions are satisfied for the model 1 above.

Suppose now that unfortunately Y_i is not observable, you can only observe

$$Y_{i}^{*} = Y_{i} + \mu + v_{i}$$
 (Model 2)

Where μ is an unknown constant parameter, v_i is random with $E(v_i) = 0$, $E(v_i^2) = Var(v_i)$ for

all *i*, and $E(v_i v_j) = 0$ for all $i \neq j$, $E(v_i \varepsilon_j) = 0$ for all *i* and *j*.

2a) Rearrange Model 1 in order to express it on form of the observable variables (Y_i^*, X_i) :

$$Y_i^* = \gamma_1 + \gamma_2 X_i + u_i \pmod{3}$$

Stating clearly the relation between the elements of Models 1 and Model 2. (7%)

2b) Is $\hat{\gamma}_2$, the OLS estimator of the coefficient of X_i in model 3, an unbiased estimator of β_2 (the coefficient of X_i in model 1)? Please show your answer. (7%)

2c) Is $\hat{\gamma}_1$, the OLS estimator of the intercept in model 3, an unbiased estimator of β_1 (the intercept in model 1)? Please show your answer. (7%)

3. Please find the MGF of the Poisson distribution, and use the MGFs to find the variance of the Poisson distribution. (12%)

(背面仍有題目,請繼續作答)

編號: 412	國立成功大學一〇一學年度碩士班招生考試試題	共 2 ^{頁,} 第 2頁
系所組別: 經濟學系		
考試科目: 統計學		考試日期:0226,節次:1

- 4. The random variable X has a continuous distribution f(x) and cumulative distribution function F(x). What is the probability distribution of the sample maximum? (6%)
- 5. Using the following joint probability distribution (16%)

			Х	
		0	1	2
	0	0.05	0.10	0.03
Y	1	0.21	0.11	0.19
	2	0.08	0.15	0.08

- 5a) Please find Var(Y)
- 5b) Please find Cov(X, Y)
- 5c) Please find $E(X^2Y^3)$
- 5d) Please find $f_r(X = 2|Y > 0)$

6. Consider a linear model to explain monthly beer consumption:

 $beer = \beta_0 + \beta_1 income + \beta_2 price + \beta_3 eduction + \beta_4 female + u$

E(u|income, price, education, female) = 0

 $Var(u|income, price, education, female) = \sigma^2 income^2$

Please describe the estimation steps for getting the unbiased and efficient estimators.(10%)

7. The following equation explains weekly hours of television viewing by a child in terms of the child's age, mother's education, father's education and number of siblings.

$$TV^* = \beta_0 + \beta_1 age + \beta_2 age^2 + \beta_3$$
 mothereducation + β_4 fathereducation + β_5 sibling + u We are
worried that TV^* is measured with error in our survey. Let TV denote the reported hours of television
viewing. That is, $TV = TV^* + e_0$, where e_0 is measurement error. Under what condition, does OLS
estimation produce unbiased estimators for $\beta_1 \sim \beta_5$. Explain. (15%).