1．Discuss the effect of the following phenomena on the unbiasedness and the variance of the OLS estimator．（20\％）［Your score depends on how completeness your answer is．］
a）Heteroskedasticity
b）Including an irrelevant variable
c）Omitting a relevant variable．
d）Multicollinearity

2．Suppose that you want to estimate the following relation：

$$
Y_{i}=\beta_{1}+\beta_{2} X_{i}+\varepsilon_{i} \quad(\text { Model } 1)
$$

Note：All the classical assumptions are satisfied for the model 1 above．

Suppose now that unfortunately Y_{i} is not observable，you can only observe

$$
Y_{i}^{*}=Y_{i}+\mu+v_{i}(\text { Model } 2)
$$

Where μ is an unknown constant parameter，v_{i} is random with $E\left(v_{i}\right)=0, E\left(v_{i}^{2}\right)=\operatorname{Var}\left(v_{i}\right)$ for all i ，and $E\left(v_{i} v_{j}\right)=0$ for all $i \neq j, E\left(v_{i} \varepsilon_{j}\right)=0$ for all i and j.

2a）Rearrange Model 1 in order to express it on form of the observable variables $\left(Y_{i}^{*}, X_{i}\right)$ ：

$$
Y_{i}^{*}=\gamma_{i}+\gamma_{2} X_{i}+u_{i} \quad(\text { Model } 3)
$$

Stating clearly the relation between the elements of Models 1 and Model 2．（7\％）

2b）Is $\hat{\gamma}_{2}$ ，the OLS estimator of the coefficient of X_{1} in model 3 ，an unbiased estimator of β_{2}（ the coefficient of X_{i} in model 1）？Please show your answer．（7\％）

2c）Is $\hat{\gamma}_{1}$ ，the OLS estimator of the intercept in model 3 ，an unbiased estimator of β_{1}（ the intercept in model 1）？Please show your answer．（7\％）

3．Please find the MGF of the Poisson distribution，and use the MGFs to find the variance of the Poisson distribution．（12\％）

系所組別：經濟學系

4．The random variable X has a continuous distribution $f(x)$ and cumulative distribution function $F(x)$ ．What is the probability distribution of the sample maximum？(6%)

5．Using the following joint probability distribution（ 16% ）

		X		
Y		0	1	2
	0	0.05	0.10	0.03
1	0.21	0.11	0.19	
2	0.08	0.15	0.08	

5a）Please find $\operatorname{Var}(Y)$
5b）Please find $\operatorname{Cov}(X, Y)$
5c）Please find $E\left(X^{2} Y^{3}\right)$
5d）Please find $f_{x}(X=2 \mid Y>0)$

6．Consider a linear model to explain monthly beer consumption：

$$
\begin{gathered}
\text { beer }=\beta_{0}+\beta_{1} \text { income }+\beta_{2} \text { price }+\beta_{3} \text { eduction }+\beta_{4} \text { female }+u \\
E(u \mid \text { income, price,educaiton, female })=0 \\
\operatorname{Var}(u \mid \text { income, price,education, female })=\sigma^{2} \text { income }{ }^{2}
\end{gathered}
$$

Please describe the estimation steps for getting the unbiased and efficient estimators．（10\％）

7．The following equation explains weekly hours of television viewing by a child in terms of the child＇s age，mother＇s education，father＇s education and number of siblings．

$$
T V^{*}=\beta_{0}+\beta_{1} \text { age }+\beta_{2} \text { age }{ }^{2}+\beta_{3} \text { mothereducation }+\beta_{4} \text { fathereducation }+\beta_{5} \text { sibling }+u \text { We are }
$$

worried that $T V^{*}$ is measured with error in our survey．Let TV denote the reported hours of television viewing．That is，$T V=T V^{*}+e_{0}$ ，where e_{0} is measurement error．Under what condition，does OLS estimation produce unbiased estimators for $\beta_{1} \sim \beta_{5}$ ．Explain．（15\％）．

