1．（20\％）Assume John purchases goods 1 and 2 with the amounts q_{1} and q_{2} respectively．His utility function is $u\left(q_{1}, q_{2}\right)=\sqrt{q_{1}}+\frac{1}{2} q_{2}$ ．
（a．）（ 10% ）Find his expenditure to achieve utility level \bar{u} for prices $\left(p_{1}, p_{2}\right)$ ．
（b．）（ 10% ）Assume his income is 11 and the initial prices are（ 1,1 ）．If the price of good 1 rises to 2 ，please find his equivalent variation．

2．(15%) Assume John spends his one－day earning to buy x units of some good with price 1. His utility function is $u=x^{a}(24-h)^{b}$ ，where h is his work hours in one day．Assume the wage is w per hour．Find his labor supply function．

3．（ 15% ）Suppose a firm hires L hours of labor services and rents K hours of machine services． Assume that the firm＇s production function $f(L, K)$ exhibits constant returns to scale and the wage of labor and the rental rate of machine are constant in the long run．Find the average cost function of the firm．

4．(25%) Suppose a competitive firm can produce $q=4 L^{1 / 4} K^{1 / 2}$ units of outputs each month when hiring L hours of labors to work with K machines．Let p be the price for its products，w be the hourly wage rate，and r be the monthly rent for each machine．Suppose the firm is also a competitive buyer in both labor and capital markets．
（a．）（5\％）Derive $L_{S R}^{D}\left(w, K_{0}\right)$ ，its short run labor demand function when working with K_{0} machines．
（b．）(10%) Derive its long run labor demand function，$L_{L R}^{D}(w)$ ．
（c．）(5%) Suppose at $w_{0}, L_{L R}^{D}\left(w_{0}\right)=L_{S R}^{D}\left(w_{0}, K_{0}\right)$ ．Show that for $w>w_{0}, L_{L R}^{D}(w)<L_{S R}^{D}\left(w, K_{0}\right)$ ．
（d．）（5\％）Mathematically show that $L_{L R}^{D}(w)$ is more elastic than $L_{S R}^{D}\left(w, K_{0}\right)$ at any w ．

5．（25\％）A firm has invented a new product．The estimated demand for its new product is $q=100-2 p$ when the price is set at p ．Suppose the product is patented so that the firm can act as a monopolist．Suppose there＇s no any production cost．
（a．） 5% ）Find the optimal price the firm should set in order to maximize its profit．
（b．）（ 15% ）Suppose the firm can boost its demand with TV commercials．If x is spent on the advertisement，the demand will shift up to $q=100-2 p+\left(2-\frac{x}{p}\right) x$ ．Suppose the firm will first determine the amount of spending on commercials，x ，and then the price for its products，p ．Find the optimal x ，the amount the firm should spend on TV commercials．
（c．）(5%) Continue on（b．）．However，suppose now the firm first has to pay additional $\$ 1,000$ to make the film to be used in TV commercials besides its advertising spending，x ，unless the firm decides not to spend any money on advertisements．Find again the optimal x in this case．

