共 う 質 ・第/百

434 系所組別 經濟學玄 考試科目 統計學

纖驗

考試日期:0307:約2:1

※ 考生請注意:本試題 ▽ □ □ 不可 使用計算機

Answer all FIVE anestions, which are worth 100 points, in the paper provided and show your work. The distribution table is attached to the end of the exam-Remember, you get full credit only if you rustify your steps and rust correct answer does not ensure you full credit (unless specified otherwise).

- Let Y denote the sample average from a random sample with mean μ and variance σ^2 Consider two alternative estimators of u: $W_i = [(n-1)/n]\overline{Y}$ and $W_2 = \overline{Y}/2$.
 - (a) (10 points) Show that W₁ and W₂ are both biased estimators of μ and find the biases. What happens to the biases as $n \to \infty$? Comment on any important differences in bias for the two estimators as the sample size gets large.
 - (b) (10 points) Find the probability limits of W₁ and W₂. Which estimator is consistent?
 - (c) (8 points) Find Var(W₁) and Var(W₂)
 - (d) (5 points) Argue that W₁ is a better estimator than Ȳ if μ is "close" to zero. (Consider both bias and variance.)
- 2. You are hired by the mayor to study whether a tax on liquor has decreased average liquor consumption in your city. You are able to obtain, for a sample of individuals selected at random, the difference in liquor consumption (in ounces) for the years before and after the tax. For person i who is sampled randomly from the population, Y. denotes the change in liquor consumption. Treat these as a random sample from a Normal(μ , σ^2) distribution. Suppose your sample size is n = 900 and you obtain the estimates of sample average and sample standard deviation, $\bar{y} = -32.8$ and s = 466.4, respectively.
 - (a) (10 points) Formally test the hypothesis that a tax on liquor has decreased average liquor consumption in your city at the 5% level of significance. (i) State the null and alternative hypotheses; (ii) calculate the test statistic: (iii) Obtain the p-value for the test; (iv) State your conclusion.

編號: 434

國立成功大學九十九學年度碩士班招生考試試題

共 } 頁 · 第 2 頁

系所組別: 經濟學系 考試科目 統計學

考試日期:0307· 前次:1

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- (b) (8 points) Explain the differences and similarities between the "level of significance" and the "level of confidence."
- (c) (6 points) The results in (a) show that we are 95% confident that μ is negative. True or false? If false, explain.
- 3. (15 points) Given that the cumulative distribution function of X is $F_X(a)=a^2/36$. Calculate the probability density function, mean and variance of X
- 4. (16 points) Suppose that X and Y are random variables. The mean of X is μ_X and the variance is 4, while the mean of Y is 0 and the variance is σ_Y^2 . Suppose that we know $\mathbb{E}(X|Y) = 2Y^2$ $\mathbb{E}(Y|X) = -3 + 0.5X$ Calculate μ_{X} , σ_Y^2 and cov(X,Y). If we also know $\operatorname{var}(Y|X)$ is a constant, c, calculate $\operatorname{var}(Y|X)$.
- 5. (12 points) $\{(X_1,Y_1), \dots, (X_n,Y_n)\}$ is a sequence of i.i.d. random variables, and $\mathbb{E}(Y_i|X_i)=2X_i$. The linear regression model under consideration is

$$Y_i = \alpha + \beta X_i + U_i$$
, $i = 1, ..., n$.

Is the least squares estimator of β a consistent estimator of the parameter, 2? Explain.

福號 434

國立成功大學九十九學年度碩士班招生考試試題

月子 第二月

系戶組別 經濟學系 考試科目 統計學

母担日記 0307 前° 1

※ 考生請注意:本試題 ▽可 □不可 使用計算機

Table 1 Area Under the Standard Normal Distribution

ξ	0 00	0.01	0.02	0 03	0.04	0.05	0.06	0.07	0.08	0.04
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0 0199	0 0239	0 0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	6 0557	0.0596	0 0636	0.0675	0.0714	0.0753
0.2	0 0793	0.0832	0.0871	0.0910	0 0948	0 0987	0 1026	0 1064	0.1103	0 1 [4]
0.3	0:179	0 1217	0.1255	0.1293	0.1331	0 1368	0 1406	0 1443	0 1480	0.151
04	0 1554	0.1591	0 1628	0 1064	0 1700	0 1736	0 1772	0 1808	0 1844	0 1879
0.5	0.1915	0.1950	0 1985	0.2019	0.2054	0 2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	(+2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
8.0	0.2881	0.2916	0.2939	0.2967	0.2995	0.3023	0.3051	0.3079	0.3106	0.3131
0.9	0.3159	0.3186	0.3212	0.3238	0 3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
IJ	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	∪ 3830
10	0.3840	0 3869	0.3888	0,3907	0.3925	0.3944	0.3462	0.80£ 0	0.3997	0.4014
1.3	0.4032	0.4049	() 4()66	0.4082	() 4099	61115	0.413.	0.4147	0.4161	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0 4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4705
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4773	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4983	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

Source: This table was generated using the SAS® function PROBNORM.