國立成功大學 107 學年度碩士班招生考試試題

系 所:臨床藥學與藥物科技研究所

考試科目:有機化學

考試日期:0206,節次:1

第1頁,共4頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Name the following compounds. (each 2 %, totally 10 %)

(a)

(e)

(c)

(d)

2. Complete the following reactions. (each 3 %, totally 30 %)

(a)

(b)

$$\frac{1) \text{ mCPBA}}{2)_{\text{H}} - \Theta \Theta_{\text{Na}}}$$

3) Excess L 4) H₂O

(c)

t..... .: (d)

$$C_6H_{11}Br$$
 Mg
 $C_6H_{11}MgBr$
 C_6H_{11}

(e)

$$\frac{1}{2}$$

1) HNO₃, H₂SO₄ 2) Fe, H⁺

3) NaNO₂, HCl 4) CuCN (f)

$$\begin{array}{c|c}
 & H_3O^+ \\
 & \end{array}$$
?

國立成功大學 107 學年度碩士班招生考試試題

系 所:臨床藥學與藥物科技研究所

考試科目:有機化學

考試日期:0206,節次:1

第2頁,共4頁

- 3. When (S)-1-bromo-1-fluoroethane reacts with sodium ethoxide, an S_N2 reaction takes place in which the bromine atom is replaced by a methoxy group (OMe). The product of this reaction is (S)-1-fluoro-1-methoxyethane. How can it be that the starting material and the product both have the S configuration? Shouldn't S_N2 involve a change in the configuration? Draw the starting material and the product of inversion, and then explain the anomaly. (5 %)
- 4. Compounds A and B are constitutional isomers with molecular formula C₃H₇Cl. When compound A is treated with sodium methoxide, a substitution reaction predominates. When compound B is treated with sodium methoxide, an elimination reaction predominates. Propose structures for compounds A and B, and explain your answers. (5 %)
- 5. Predict the major product(s) of the following reactions and explain your answers. (each 3 %, totally 6 %)

(a) (b)

6. Rank the following compounds in decreasing order of pKa and explain your answer. (each 3 %, totally 6 %)

(a) (b)
$$II_{H}$$
 II_{H} II_{H}

7. Draw trans-1,2-dimethylcyclohexane in its more stable chair conformation. Are the methyl groups axial or equatorial? (3 %)

國立成功大學 107 學年度碩士班招生考試試題

系 所:臨床藥學與藥物科技研究所

考試科目:有機化學

考試日期:0206,節次:1

第3頁,共4頁

8. Complete the following transformation (each transformation should be more than 3 steps). (each 5 %, totally 15 %)

(a)

(b)

(c)

$$NH_2$$

- 9. A compound with molecular formula C₈H₈O produces an IR spectrum with signals at 3063, 1686, 1646 cm⁻¹. The ¹H NMR spectrum of this compound exhibits a singlet at 2.6 ppm (3H) and a multiplet at 7.5 ppm (5H).
- (a) Draw the structure of this compound. (2 %)
- (b) What is the common name of this compound? (1 %)
- (c) Treating this compound with Na/NH₃ yields a product with molecular formula C₈H₁₀O. Draw the product of this reaction. (2 %)
- 10. Compounds A, B, C, and D are constitutional isomeric, aromatic compounds with molecular formula C₈H₁₀. Deduce the structure of compound D using the following clues and explain your answer (5 %).
- (1) The ¹H-NMR spectrum of A exhibits two upfield signals as well as a multiplet near 7 ppm (5H).
- (2) The ¹³C-NMR spectrum of B exhibits four signals.
- (3) The ¹³C-NMR spectrum of C exhibits only three signals.

國立成功大學 107 學年度碩士班招生考試試題

系 所:臨床藥學與藥物科技研究所

考試科目:有機化學

考試日期:0206,節次:1

第4頁,共4頁

11. Compounds 1 and 2 (structures shown below) both contain tritium (T), which is an isotope of hydrogen. Both compounds are stable upon treatment with aqueous base. However, upon prolonged treatment with aqueous acid, compounds 1 and 2 both lose tritium, to give 1,3-dimethoxybenzene and 1,3,5-trimethoxybenzene, respectively.

$$H_3CO$$
 OCH_3
 $OCH_$

- (a) Draw a mechanism showing how tritium is removed from compounds 1 and 2. (3 %)
- (b) Use your mechanism to predict which compound is expected to lose tritium at a faster rate and explain it. (2 %)
- 12. When methyl benzoate bears a substituent at the para position, the rate of hydrolysis of the ester group depends on the nature of the substituent at the para position. Apparently, a methoxy substituent renders the ester less reactive, while a nitro substituent renders the ester more reactive. Explain this observation. (5 %)