國立成功大學 113學年度碩士班招生考試試題

編 號: 266

系 所: 臨床藥學與藥物科技研究所

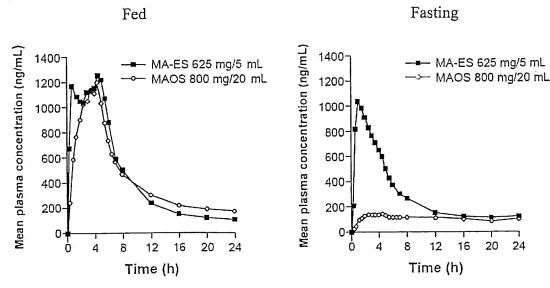
科 目:藥劑學

日期:0202

節 次:第1節

備 註:不可使用計算機

編號: 266


國立成功大學 113 學年度碩士班招生考試試題

考試科目:藥劑學

考試日期:0202,節次:1

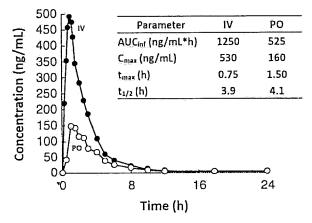
第1頁,共3頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Explain the following equation/terminology and their applications in pharmaceutics. (15%)
 - (1) Arrhenius equation (5%)
 - (2) Colligative properties (5%)
 - (3) Zeta potential (5%)
- 2. Define emulsion and microemulsion. What are the differences between their characteristics and preparation? (10%)
- 3. What are the three types of non-Newtonian materials? Plot their rheograms (shear rate vs. shear stress) and explain their characteristics. (10%)
- 4. A pharmaceutical company designed two megestrol acetate oral suspension formulations. MA-ES is a nanosized formulation, while MAOS is a micronized formulation. The plasma concentrations of megestrol acetate following administration of 625 mg MA-ES or 800 mg MAOS under fed and fasting conditions are compared in the following figures. (15%)

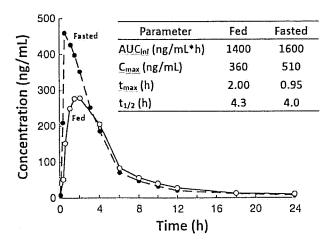
- (1) From the figures, compare the effect of particle size on the plasma concentration-time curve. (7%)
- (2) Using theoretical equations to explain the possible mechanism of particle size influences on plasma concentration-time curve. (5%)
- (3) Which BCS class may the drug belong to? (3%)

編號: 266

國立成功大學 113 學年度碩士班招生考試試題


系 所:臨床藥學與藥物科技研究所

考試科目:藥劑學


考試日期:0202,節次:1

第2頁,共3頁

- 5. The figure below shows the mean plasma concentration-time profiles of a drug X following oral administration (PO) and a 50-min intravenous infusion (IV) of 50 mg of the drug to healthy subjects. The mean values of kinetic parameters shown in the table are the area under the plasma concentration-time curve extrapolated to infinity (AUC_{inf}), maximal plasma concentration (C_{max}), time to reach maximal plasma concentration (t_{max}), and the terminal half-life (t_{1/2}). (20%)
 - (1) Determine the absolute bioavailability of the tablets. (5%)
 - (2) Determine the clearance (CL) of the drug. (5%)
 - (3) Determine the volume of distribution (V) of the drug. (5%)
 - (4) Studies with radiolabeled X have shown that 92% of the drug is absorbed, although much less intact drug is detected in plasma. Can you explain this difference? (5%)

- 6. The figure below shows the mean plasma concentration-time profiles of the drug X after oral administration of 100 mg of the drug to fasted and fed volunteers. (10%)
 - (1) Describe the food effect on the oral absorption of drug X. (5%)
 - (2) Would you recommend to take drug X with food? Why? (5%)

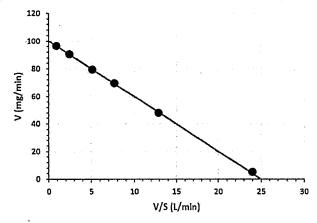
編號: 266

國立成功大學 113 學年度碩士班招生考試試題

系 所:臨床藥學與藥物科技研究所

考試科目:藥劑學

考試日期:0202,節次:1


第3頁,共3頁

7. The in vitro enzyme kinetics are depicted in the figure below, where Y is the rate of drug metabolism and S is the concentration of drug. The enzym kinetics is described by the following equation: (10%)

$$V = \frac{V_{max} \cdot S}{K_M + S}$$

$$V_{max}: \text{ the maximum metabolic rate } K_M: \text{ the Michaelis constant}$$

- (1) Determin the V_{max} and K_M of the system. (5%)
- (2) What is the rate of drug metabolism when the concentarion of drug in the system is 12 mg/L? (5%)

8. Describe the categories of in vitro-in vivo correlation (IVIVC) of drug product performance. (10%)