國立成功大學 111學年度碩士班招生考試試題

編 號: 271

系 所:藥理學研究所

科 目: 生物化學

日 期: 0220

節 次:第3節

備 註:不可使用計算機

國立成功大學 111 學年度碩士班招生考試試題

編號: 271

系 所:藥理學研究所 考試科目:生物化學

考試日期:0220,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. The functional domain of X protein is shown as: ---ANDGHSVCARGH---, please answer the following questions: (total 15 %)

Alamine Ala A

a. Which amino acid could be phosphorylated to regulate the protein activity? (3 %)

- b. X protein can be glycosylated on which amino acid? (3 %)
- In order to mimic the activation or kinase-dead protein, what kind of amino acids could be as the phospho- and dephospho-mimetic substitutions? (3 %)
- d. What kind of amino acid confer the sulfhydryl group to the folding of polypeptide chains? (3 %)
- e. If X protein is secreted and released into serum, what's tools can be used to detect it? (3 %)

Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	".
Aspartic acid	Asp	D
Cysteine	Cys	C
Glutamic acid	Glu	E
Glutamine	Glu	Q
Glycine	Gly	G
Histidine	His	H
Isoleucine	He	t
Leucine	Len	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	I:
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	11.
Tyrosine	Tyr	1.
Valine	Val	V

- 2. The promoter region of the Y gene has the sequence shown as follows: ---ATTCGCCGCGTTGGTAAA---, please answer the following questions: (total 20 %)
 - a. If Y gene is turned off in normal condition, please explain the possible mechanism involved in the regulation of gene silencing; and what kind of tools (assays) could be used to evaluate the percentage (potency) of gene silencing? and what is the principle of the assay? (12 %)
 - If you want to construct Y gene into the expression vector such as pcDNA3.1, what antibiotic could be used to select the clone? (2 %)
 - c. How to verify the selected clone with the correct orientation of inserted gene? (2 %)
 - d. If the gene is cloned with Hind III and EcoR V sites, how to label and analyze the inserted gene that has the correct size? (4 %)

pRSET-C vector alone: 5.4 kb δ-FlincG insert: 2.5 kb

3. The phospholipids are the major class of membrane lipids, please answer the following questions: (total 23 %)

國立成功大學 111 學年度碩士班招生考試試題

編號: 271

所:藥理學研究所

考試科目:生物化學

考試日期:0220,節次:3

第2頁,共2頁

- a. What parts (A and B) are the hydrophobic and hydrophilic properties?(3 %)
- b. In addition to temperature, what substance can determine membrane fluidity? (3 %)
- c. Please describe the principle of micelle formation. (3 %)
- d. Please describe the differences between palmitate and oleate. (4 %)
- e. Why the low-density lipoprotein (LDL) is associated with atherosclerosis? (5 %)
- f. Please define the functions of membrane receptors and nuclear receptors in cells. (5 %)

- 4. The proliferation and survival of cells are relied on supporting the production of energy through aerobic and anaerobic metabolism. Please answer the following questions: (total 27 %)
 - a. What organelle can produce ATP in cells? (3 %)
 - b. How much ATP can be produced during aerobic and anaerobic respiration? (3 %)
 - c. What is substrate A for the processing of oxidative phosphorylation shown in the figure? (3 %)
 - d. Please describe the process (steps) in the production of reactive oxygen species (ROS) and ATP during oxidative phosphorylation. (6 %)
 - e. What is the source (metabolic substrate) for the formation of Acetyl-CoA (3 %)
 - f. What is the major electron donor in reductive biosynthesis? (3 %)

- g. What substrates are essential for the synthesis of citrate in the citric acid cycle? (3 %)
- h. What is the major product of anaerobic metabolism, which confers the lower pH value in the extracellular environment? (3 %)
- 5. Please descript the following terms: (15 %)
 - a. Endocytosis
 - b. CRISPR-Cas9
 - c. Exosome
 - d. Metabolomics
 - e. Ferroptosis