國立成功大學八十四學年度發理的入学考試(生物化学 試題) # 4頁

- What would be the pH and concentration of the resulting buffer solution when 3.48 g of K₂HPO₄ and 2.72 g of K₂HPO₄ are dissolved in 250 ml of deionized water? [Hint: use Henderson-Hasselbach equation to solve the problem. Phosphoric acid has pK_{a1}= 2.12; pK_{a2}= 7.21; pK_{a3}= 12.32]. (10%)
- 2. The following events, steps, or reactions occur during E. coli DNA replication. For each entry in Column A, select the appropriate entry in Column B. Each entry in A may have more than one answer, and each entry in B can be used more than once. (13%)

		Column A
	a.	Unwinds the double helix
	b.	Prevents reassociation of complementary bases
	c.	Is a RNA polymerase
-	d.	Is a DNA polymerase
	e.	Is the "repair" enzyme
	f.	Is the major elongation enzyme
	g.	A 5' → 3' polymerase
	h.	A 3' → 5' polymerase
	i.	Has 5' → 3' exonuclease function
	j.	Has 3' → 5' exonuclease function
	k.	Bonds free 3'-OH end of a polynucleotide to a free 5' monophosphate end of polynucleotide
	1.	Bonds 3'-OH end of a polynucleotide to a free 5' nucleotide triphosphate
	m.	Separates daughter molecules and

Column B

- A Polymerase I
- B Polymerase III
- C Helicase
- D Primase
- E Ligase
- F SSB protein
- G Gyrase
- H None of these

- 3. A bottle contains 1 mCi of L-phenylalamine -C¹⁴ (uniformly labeled) in 2.0 ml of solution. The specific activity of the labeled amino acid is given as 150 m Ci/mmole. Calculate (a) the concentration of L-phenylalanine in the solution and (b) the activity of the solution in terms of CPM/ml at a counting efficiency of 80%. [Hint: 1 curie = 2.22 x 10¹² DPM; CPM = counting efficiency x DPM (5%)
- 4. A gene makes a polypeptide 30 amino acids long containing an alternating sequence of phenylalanine and tyrosine. What are the sequences of nucleotides corresponding to this sequence in the following: (8%)
 - a. The DNA strand which is read to produce the mRNA, assuming Phe = UUU and Try = UAU in mRNA
 - b. The DNA strand which is not read
 - c. The sequence that is meant to be the gene
 - d. tRNA

Directions: Each of the following questions contains five suggested answers. Choose the one best response to each question. Two points for each question.

- 5. Which of the following electrophoretic analytic procedures does not depend on the charge of the protein?
 - (1) moving boundary electrophoresis.
 - (2) zone electrophoresis.
 - (3) polyacrylamide gel electrophoresis in sodium dodecyl sulfate.
 - (4) isoelectric focusing.
 - (5) none of the above.
- 6. The specific activity of an enzyme is
 - (1) the amount of enzyme that produces 1 mol of product per second under standard conditions.
 - (2) the activity of an enzyme in relation to a standard preparation of the enzyme.
 - (3) the number of enzyme units per milligram of enzyme protein.
 - (4) the amount of enzyme causing transformation of 1 umol of substrate per minute under standard conditions.
 - (5) the activity of an enzyme in the presence of its preferred substrate.
- 7. The Michaelis-Menten constant (K_m) is
 - (1) numerically equal to V_{max}/2.
 - (2) the equilibrium constant for the dissociation of ES to E + P.
 - (3) increased in value with increasing affinity of the enzyme for its substrate.
 - (4) the substrate concentration at 1/2 V_{max}.
 - (5) the intercept on the 1/v axis of a Lineweaver-Burk transform.

- 8. Which of the following compounds can serve as neurotransmitters?
 - (1) norepinephrine
 - (2) 5-hydroxytryptamine
 - (3) dopamine
 - (4) γ -aminobutyrate
 - (5) all of the above
- 9. Deoxyribonucleotides are formed by reduction of
 - (1) ribonucleosides.
 - (2) ribonucleoside monophosphates.
 - (3) ribonucleoside diphosphates.
 - (4) ribonucleoside triphosphates.
 - (5) none of the above.
- 10. Restriction endonucleases are enzymes that
 - (1) cleave the 5' terminal nucleotides from duplex DNA molecules.
 - (2) make sequence-specific cuts in both strands of duplex DNA molecules.
 - (3) promote circularization of the duplex DNA molecule by removal of the 5' terminal nucleotides.
 - (4) generate 3'-hydroxyl and 5' phosphate ends in the cut DNA strands.
 - (5) (2) and (4).
- 11 Enzymes increase the rates of reactions by
 - (1) increasing the free energy of activation.
 - (2) increasing the free-energy change of the reaction.
 - (3) changing the equilibrium constant of the reaction.
 - (4) decreasing the energy of activation.
 - (5) decreasing the free-energy change of the reaction.
- 12. How the genetic traits are carried over from one generation to another of any living organism? (5%)
- 13. In a dividing eukaryotic cell, generally how many phases (or stages) are described in the cell cycle? (2%) Why existing different phases in eukaryotes but not in prokaryotes? (3%)
- 14. When you feel hungry, glucagon is released into the blood stream. What's the biochemical event can be induced inside the liver cell? (5%) One the other hand, insulin is released into the blood stream after a rich meal. How insulin makes liver cell store glucose from the blood stream? (5%)

15. Different phospholipases can hydrolyze phospolipids at different ester bonds. Please fill out each name of the enzymes in the following figure (A to D) (4%). Arachidonic acid is an important fatty acid for the synthesis of Prostaglandin E₁ and other biological effectors. Which enzyme is required for releasing arachidonic acid from the lipid? (E) (1%)

- 16. What is the general picture of mRNA harvested from mammalian cells? (5%)
- 17. The following Lineweaver-Burk plot is derived from an inhibitor (I) that block the enzymatic activity of cdc25B phosphatase on the digestion of p-nitrophenyl phosphate (pNPP). Please calculate the K_m and V_{max} of this enzyme. (4%) What is the inhibition mechanism of this I compound on cdc25B phosphatase? (2%)

- 18. Briefly explain the following terms:
 - a. intron and exon (2%)
 - b. operon (2%)
 - c. kinase and phosphatase (2%)
 - d. oncogene and proto-oncogene (2%)
 - e. PCR (Polymerase Chain Reaction) (2%)
 - f. TCA cycle (4%)