編號	: 307 國立成功大學 103 學年度碩士班招生考試試題 共 4 頁,第 / 頁			
系所組別:生物化學暨分子生物學研究所				
	式科目:分子生物學 考試日期:0223,節次:2			
*	考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。			
	·選擇題:(30分,每題2分)			
1. Which of the following is a technique used for genomic functional profiling?				
	(a). DNA microchips			
	(b). RNAi analysis			
	(c). SAGE			
	(d). transcription activation(e). RFLP			
2.	Which of the following is not a technique that can be used to study protein-protein interactions?			
	(a). 2-D gel electrophoresis			
	(b). protein microarrays			
	(c). immunoaffinity chromatography			
	(d). phage display(e). yeast two-hybrid analysis			
	(c). yeast two-hybrid analysis			
3.	Which of the following statements is not true concerning homologous recombination?			
	(a). It can be intramolecular.			
	(b). It can be bimolecular.			
	(c). Only one cross-over event can occur.			
	(d). It results in genetic variation.			
	(e). It is a reciprocal event.			
4.	Which of the following techniques was key in demonstrating the presynapsis and synapsis steps of			
	homologous recombination?			
	(a). S1 nuclease mapping			
	(b). exonuclease digestion			
	(c). DNA footprinting			
	(d). Southern Blot			
	(e). electron microscopy			
5.	Biochemical and genetic experiments have demonstrated that the of tRNA are important for recognition by its cognate aminotransferase-tRNA synthetase.			
	(a). D loop and T loop(b). T loop and variable loop			
	(c). anticodon loop and T loop			
	(d). acceptor stem and anticodon loop (背面仍有題目,請繼續作答)			
	(e). variable loop and D loop			

. •

- 6. Please place the steps of translation elongation in the correct order.
 - 1). Peptidyl transferase forms a peptide bond between the peptide in the P site and the newly arrived aminoacyl-tRNA in the A site.
 - 2). EF-G, with GTP, translocates peptidyl-tRNA to the P site.
 - 3). EF-Tu, with GTP, binds an aminoacyl-tRNA to the ribosomal A site.
 - (a). 3, 1, 2
 - (b). 3, 2, 1
 - (c). 1, 2, 3
 - (d). 1, 3, 2
 - (e). 2, 3, 1

7. Which of the following antibiotics does not inhibit protein synthesis by binding to the ribosome?

- (a). chloroamphenicol
- (b). streptomycin
- (c). tetracycline
- (d). erythromycin
- (e). ampicillin

8. Which of the following RNAs is involved in mRNA editing?

- (a). rRNA
- (b). tRNA
- (c). gRNA
- (d). snRNA
- (e). iRNA

9. Which of the following processes occurs posttranscriptionally?

- (a). Cap addition
- (b). adenosine deamination
- (c). Poly(A) addition
- (d). promoter clearance
- (e). unwinding

10. In liver cells, the production of compound (6 C) is blocked by a defect in the enzyme e3:

編號: 307	國立成功大學 103 學年度碩士班招生考試試題	共4頁,第3頁
系所組別:	生物化學暨分子生物學研究所	
考試科目	: 分子生物學	考試日期:0223,節次:2

Which of the following is the best way to restore the production of C6?

- (a). Reduce the level of C1.
- (b). Reduce the level of C3.
- (c). Treat cells by supplying e4.
- (d). Treat cells by supplying C4.
- (e). Block the formation of C5.
- 11. A new mutant cell line was accidentally created in the lab. This mutant was found to be deficient in the enzyme aminacyl-tRNA synthetase. Which of the following would most likely be observed in this cell line?
 - (a). No tRNA molecules would be present.
 - (b). TRNA molecules would contain no anticodons.
 - (c). Most tRNA molecules would not be able to attach to amino acids.
 - (d). Protein synthesis would increase.
 - (e). None of the choices are correct.
- 12. In which of the following scenarios is a silent mutation least likely?
 - (a). change in a sequence in the 5' UTR
 - (b). change in a sequence the 3' UTR
 - (c). change in a sequence in an exon
 - (d). change in the sequence in the promoter
 - (e). change in a sequence in an intron
- 13. What is the RACE technique?
 - (a). screening a genomic library
 - (b). extending incomplete cDNA sequences
 - (c). generating polynucleotide probes
 - (d). rapid amplification of genomic DNA
 - (e). screening a genomic library and generating polynucleotide probes

14. Which of the following is not true about run-on transcription assay?

- (a). Isolated nuclei are used in the assay.
- (b). Cytoplasmic RNA is included in the assay.
- (c). The reaction is done in the presence of labeled nucleotide.
- (d). The assay can reveal the transcription rates of genes
- (e). Genes being transcribed can be identified.

- 15. Which of the following statement is false regarding the sigma-factor in bacteria?
 - (a). It does not have a DNA-binding domain.
 - (b). Interaction with the core enzyme unmasks the DNA-binding region.
 - (c). Subregions 2 and 4 are involved in promoter recognition.
 - (d). It can also bind to the nontemplate strand.
 - (e). It can bind to the -10 box.
- 二、問答題 (70分,每題10分)
- 16. Please first draw and name the molecular structure of a general mature eukaryotic mRNA, and then describe their functions in protein translation. (10%)
- 17. Please first compare the differences of translational initiation between prokaryotic and eukaryotic cells, and then describe the processes during translational initiation in eukaryotic cells. (10%)
- 18. Please first define the meanings of noncoding RNAs, and then describe two noncoding RNAs and their functions in eukaryotic cells. (10%)
- Describe locus control region and chromatin remodeling machinery in RNA polymerase II transcription. (10%)
- 20. Describe important epigenetic markers and their effects on transcription in eucaryotic cells. (10%)
- 21. Describe three types of polymerase III transcription. (10%)
- 22. Describe important regulatory mechanisms in mRNA degradation. (10%)