國立片	支马	力大學七六學年度生物化學考試(生物化學 試題)等	12 j
、選擇題	(每題一分,均為單選,答錯不倒扣)	
·	1.	. Which of the following amino acids is not optically active?	
		A. Proline B. Threonine C. Glutamic acid D. Glycine E. Alanine	
	2.	Compared to a saturated fatty acid of the same chain length, an unsaturated fatty acid	٠
		A. has a higher melting point. B. has a higher density of packing in a monolayer. C. imparts greater fluidity to a membrane. D. has a higher pK. E. has a higher boiling point.	
	3.	The transformation of glycine to serine which involves the additione carbon unit requires the presence of	n of
		A. niacin and B_6 . B. B_{12} and B_6 . C. folic acid and B_{12} . D. niacin and B_{12} . E. thiamine and B_6 .	
	4.	Glycogen	
		A. contains β 1,4-glycosidic bonds. B. contains α 1,4-linkages only. C. contains α 1,6-linkages only. D. is composed entirely of glucose residues. E. none of the above	
	5.	The nitrogen atom at position 3 of pyrimidine nucleotides is derive is denovo synthesis from	ed
		A. glutamine. B. aspartic acid. C. glycine. D. tryptophan. E. arginine.	
	6.	Phospholipids are important cell membrane constituents because they	y
ā.		A. are the only amphoteric molecules in cells. B. contain both polar and nonpolar portions. C. can form liposomes with water. D. contain glycerol. E. combine covalently with proteins.	

7. In electrophoresis, if pH is higher than the pI (isoelectric point), the protein will $\,$

A. move toward cathode.
B. move toward anode.
C. not move.
D. form zwitterion.
E. precipitate.

國立成	功大學七十六學年度生物化學考試(生物化學 試題)第2頁
8.	How many moles of ATP are formed when 1 mole of glucose as glycogen is oxidized to lactate?
	A. 1 B. 2 C. 3
	D. 4 E. 6
9.	Xanthine is
	A. a final product of purine degradation. B. an intermediate in the formation of urate from guanine. C. deficient in the condition known as gout. D. a competitive inhibitor of hypoxanthine oxidase. E. a competitive inhibitor of IMP dehydrogenase.
10.	Formation of a-helix in proteins is due mainly to the presence of
	A. hydrogen bond. B. disulfide bond. C. hydrophobic interaction. D. salt bridge. E. DNA.
11.	Which of the following reactions is rate limiting step of cholesterol biosynthesis?
	A. Lanosterol ————————————————————————————————————
12.	Which of the following statements regarding methionine is INCORRECT?
	A. S-adenosylmethionine contains a positively charged sulfur (sulfonium) that facilitates the transfer of substituents to suitable acceptors. B. S-adenosylmethionine participates in the formation of spermine. C. In activation of methionine to S-adenosylmethionine, two phosphate groups of ATP are released. D. Methionine can be generated by trasferring the methyl group from 5-methyltetrahydrofolate to homocysteine. E. S-adenosylhomocysteine is formed from S-adenosylmethionine after the methyl group is transferred to its acceptor.
13.	Which of the following statements about tRNA is INCORRECT?
	 A. The tRNA usually contains about 65-100 nucleotides. B. The modified bases are important in the three-dimensional structure of tRNA. C. The tRNA comprises about 15% of the total cellular RNA. D. The CCA-OH is present at the 3' terminus of all completed tRNA molecules. E. The tRNA binds amino acids without the participation of any enzyme.
14.	Which of the following factors affect(s) the solubility of proteins?
	A. salt concentration B. pH of the solution C. organic solvents D. all of the above E. none of the above
15,	HDL can remove cholesterol from peripheral tissues because it has high LCAT activity and high content of
	A. triglycerides. B. phospholipids. C. proteins. D. cholesterol. E. none of the above

國立成	功大學七十六學年度生物化學考試(生物化學 試題)共12頁
	7707
16	. The symptoms of scurvy are due primarily to
	A. a failure to remove the NH2-terminal fragments from procollagen molecules.
	 B. a failure to incorporate ascorbic acid into procollagen molecules. C. the inadequate formation of hydroxyproline and hydroxylysine. D. the inadequate formation of disulfide bonds between procollagen molecules. E. a failure to protect the procollagen molecules from oxidation by peroxides.
17	. Which subunit of procaryotic RNA polymerase is responsible for promoter recognition?
	A. sigma (σ) B. rho (ρ) C. α D. β' E. β
18	Peptide bond is one type of
	A. hydrogen bond. B. ionic bond. C. covalent bond. D. hydrophobic bond. E. disulfide bond.
19	Ketosis is ascribed to
	A. a slowdown in fat metabolism. B. an overproduction of acetyl CoA. C. an underproduction of glucose. D. an overutilization of glucose. E. the ketogenicity of pyruvate in the liver.
20	If $\frac{1}{2}$ mole of fructose-1,6-diphosphate were oxidized to one mole of lactate by the glycolytic pathway, the net yield of ATP would be
	A. O. B. 1. C. 2. D. 3. E. 4.
21.	In eukaryote, which of the following polymerase is required for the synthesis of rRNA?
	A. RNA polymerase I B. RNA polymerase II C. RNA polymerase III D. none of the above E. all of the above
22.	Based on chemical structure, insulin is
	A. carbohydrate. B. glycoprotein. C. protein. D. lipoprotein. E. nucleic acid.
23.	Thiamine is a cofactor for
	A. the fixation of carbon dioxide. B. amino transferases. C. the metabolism of acyl groups. D. the transfer of one-carbon unit. E. decarboxylation reactions.

國立成	功大學七十六學年度生物化學考試(生物化學 試題)共12月
24	. Cholesterol uptake is mediated by
	A. LDL receptor. B. nonspecific protein. C. sterol carrier protein. D. HDL. E. IDL.
25	If you assume that the E' for fumarate + $2H^+$ + $2e^-$ > succinate is 0.03 volts, the E' for $\frac{1}{2}O_2$ + $2H^+$ + $2e^-$ > H_2O is 0.82 volts, and the formation of ATP from ADP and Pi under the conditions in question requires a free energy change of 7.3 Kcal/mol; the percentage efficiency of energy conservation in ATP as succinate is oxidized to fumarate by intact mitochondria is approximately (F=23.062 kal/ $N \cdot mol$)
	A. 20%. B. 30%. C. 40%. D. 50%. E. 60%.
26.	Which of the following enzymes can join a 5'-monophosphate group to a 3'-OH group?
	A. DNA polymerase I B. DNA polymerase II C. DNA polymerase III D. DNA ligase E. DNA primase
27.	The terms "primary", "secondary" and "tertiary" in protein chemistry refer, respectively, to
	A. α -helix, β -helix and γ -helix. B. peptide bonds, disulfide bonds and van der Waals forces. C. peptide bonds, hydrogen bonds and α -helix. D. electrostatic interaction, van der Waals forces and disulfide bonds. E. amino acid sequence, α -helix and hydrophobic interactions.
28.	The main steroid produced in the ovary is
	A. estradiol. B. corticosterone. C. aldosterone. D. testosterone. E. cortisol.
29.	Which of the following statements about Vitamin D is INCORRECT?
	A. It is converted into a hormone. B. After UV irradiation, ergosterol is a good source of Vitamin D. C. Children in the tropic area require dietary Vitamin D. D. 7-Dehydrocholesterol in human skin is converted to Vitamin D ₃ by ultraviolet irradiation. E. Chronic renal and hepatic failure may result in abnormality of Vitamin D metabolism.
30.	In regard to the cytochromes:
	A. Cytochrome aa ₃ has a more positive oxidation-reduction potential than oxygen. B. Only cytochrome a contains a heme prosthetic group. C. Cytochrome c is a peripheral membrane protein. D. Cytochrome b contains copper which is reduced and oxidized during electron transport. E. none of the above

國立成功大學七六學年度生物化學考試(生物化學 試題)共12
31 Which of the first the second of the seco
31. Which of the following factors is <u>NOT</u> required for protein synthesis? A. mRNA
B. Ribosomes C. GTP D. Aminoacyl-tRNAs E. Aminoglycosides
32. Cycloheximide is an inhibitor of
A. DNA synthesis in procaryotes. B. DNA synthesis in eucaryotes. C. protein synthesis in procaryotes. D. protein synthesis in eucaryotes. E. all of the above
33. An important structural feature of antibodies (immunoglobulins) is that
A. they are composed of two peptide chains. B. they are composed of a single peptide chain. C. they are composed of two heavy and two light chains. D. they contain no sulfur amino acids. E. they dissociate in concentrated urea solution.
34. The catalytic unit of adenylate cyclase is activated by the G-protein in the presence of
A. CTP. B. ATP. C. cAMP. D. GTP. E. GDP.
35. The pyruvate dehydrogenase complex
A. catalyzes a reaction with the net production of acetyl CoA and $FADH_2$. B. contains thiamine pyrophosphate as a cofactor. C. contains biotin as a cofactor. D. catalyzes the reduction of FAD by NADH. E. none of the above
36. Which of the following vitamins is <u>INCORRECTLY</u> matched with its chemical name?
 A. Vitamin E (α-tocopherol) B. Vitamin B₁(Niacin) C. Vitamin B₆ (pyridoxal) D. Vitamin B₂ (flavin) E. Vitamin B₁₂ (cyanocobalamine)
37. Which of the following enzymes is <u>NOT</u> required for repair of thymine dimers?
A. UV-specific endonuclease B. DNA polymerase I C. thymidine kinase D. DAN ligase E. photolyase (photoreactivity enzyme)
38. Blood plasma differs from blood serum in content of
A. lipids. B. erythrocytes. C. carbohydrates. D. fibrinogen and blood coagulating factors. E. sodium ions.

國立成功大學七十六學年度生物化學考試(生物化學 試題)共12月
国立成功大学七十六学年度生物化学考試(生物化學 試題)共12月
39. Which of the following enzymes participates in fatty acid oxidation?
A. Carnitine acyltransferase B. Malic enzyme
C. Acetyl CoA carboxylago
D. Glucose-6-phosphate dehydrogenase E. Pyruvate carboxylase
40. If one mole of acetyl CoA is oxidized to succinate via the Krebs cycle in conjunction with the electron transport system.
the system,
A. 10 moles of high energy phosphate bonds are formed. B. 2 moles of CO ₂ are formed.
C. 2 moles of molecular O
D. oxaloacetate is not involved in this sequence. E. none of the above
41. In the derivation of the Michaelis-Menten equation it is assumed that
A. the concentration of the opposite the concentration of the concentrat
b. the product can be converted back to the
B. the product can be converted back to the substrate in the initial C. the velocity of the manner.
C. the velocity of the reaction is linearly proportional to the concentration of the enzyme-substrate complex.
ly equal to the construction of the enzyme-substrate complex is always approximate-
s and the substrate is irreversible.
42. The most common and important experimental technique for transferring a plasmid from one bacterium strain to another is
A. CaCl ₂ transformation. B. AlCl ₃ transformation.
C. LiCl transformation. D. spheroplast transformation.
E. nick trnaslation.
43. When hemoglobin combines with O2
A. the Fe ⁺² of hemoglobin is oxidized to Fe ⁺³ .
C. only one Os can be that into monomers.
D. the dissociation of O ₂ and hemoglobin follows a sigmoid curve.
•
44. Which of the following enzymes catalyzes the rate limiting step in fatty acid synthesis?
A. Glucose-6-phosphate dehydrogenase. B. Citrate cleavage enzyme.
C. Mailc enzyme.
D. Fatty acid synthase. E. Acetyl CoA carboxylase.
45. Which of the following statements regarding branched-chain amino acids is INCORRECT?
A. All branched chain amino acids are essential in human beings. B. The catabolism products of leucine are glucogenic. C. All branched-chain amino acids are glucogenic.
CoAs one carbon shorten acrus are oxidized to branched-chain acvi
D. All branched-chain amino acids are catabolized in a similar process
E. The first step in degradation as
transamination of the α -amino groups to α -ketoglutarate.

國立成功大學七六學年度 生物化學 考試(生物化學 試題) 第7	頁 頁
46. In the Krebs cycle, the hydrolysis of succinyl CoA results in	
A. the release of O ₂ . B. the release of CO ₂ . C. a substrate level phosphorylation. D. the reduction of NAD ⁺ . E. none of the above	
47. The primary transcript in encaryotes	
A. is usually shorter than the functional RNA. B. may contain modified bases. C. will not contain modified bases but may contain modified sugar. D. could contain information for more than one RNA molecule. E. is most efficient if the transcript contains high $G \cdot C$ content.	
48. In a severe deficiency of Vitamin K	
 A. γ-carboxylation of the appropriate glutamic acid residues of prothrombin is inhibited. B. the formation of fibrin is increased. C. the binding of Ca⁺² to prothrombin is enhanced. D. an abnormal fibrinogen is synthesized. E. none of the above 	·
49. Pyruvate and alanine are components of a shuttle that involves	
 A. transport of muscle nitrogen to liver gluconeogenesis. B. transport of alanine and pyruvate between cytosol and mitochondria in liver. C. transport of alanine for protein synthesis in muscle. D. transport of alanine to muscle. E. muscular gluconeogenesis. 	
50. Pyruvate carboxylase	
A. catalyzes the conversion of phosphoenol pyruvate to oxaloacetate. B. contains no prosthetic group. C. is an allosteric enzyme with an absolute requirement for acetyl CoA. D. requires GTP as a substrate. E. none of the above	
51. Which of the following bases is never found in the first (5') position of an anticodon	Ì
A. A B. U C. C D. G E. none of the above	
52. The most likely method for precipitating active proteins from a tissue extract is by the addition of	
A. 1N HC1. B. 1N NaOH. C. trichloroacetic acid. D. ammonium sulfate. E. none of the above	
53. Which of the following conditions would increase the rate of the Krebs cycle?	
A. high NADH + H ⁺ B. low ADP C. high ATP D. high NAD ⁺ E. none of the above	

國立	.成	功大學七十六學年度等物化學考試(生物化學試題)第8頁
-		
	54.	Which of the following enzymes can repair damaged RNA?
		A. RNA polymerase I B. RNA polymerase II C. RNA polymerase III D. all of the above E. none of the above
	55.	Heme, the prothetic group of hemoglobin, is formed by the incorporation of ${\rm Fe}^{+2}$ into
		A. uroporphyrin I. B. protoporphyrin III. C. coproporphyrin III. D. bilirubin. E. porphin.
	56.	Glycogen phosphorylase
		A. is called phosphorylase b when it is in active form. B. acts on glycogen to produce glucose-6-phosphate directly. C. is activated by phosphorylase phosphatase. D. is inactivated by phosphorylase kinase. E. none of the above
	57.	Order the DNA molecules shown below from lowest to hightest melting temperature. In each case only one of the complementary strand is given. (1) AAAGTTTAATTC (2) AGTATCAATGCTT (3) GGACCCTGCCAG Answer
		A. 1,2,3 B. 1,3,2 C. 2,1,3 D. 2,3,1 E. 3,1,2
	58.	Glycogen synthetase
		 A. exists in inactive form when it is phosphorylated. B. can make α(1 —) 6) glycosidic bonds. C. is inactivated by phosphoprotein phosphatase. D. is activated by cyclic AMP-dependent protein kinase. E. none of the above
	59.	DNA polymerization occurs at
		A. 5' end of the primer. b. 3' end of the primer. C. 3' end of the template. D. 5' end of the template. E. none of the above
	60.	The chemiosmotic coupling hypothesis
		A. states that an electrochemical gradient of protons across the mitochondrial inner membrane serves as the means of coupling the energy flow of electron transport to the formation of ATP. B. does not involve the ATP synthetase enzyme. C. does not require an organized membrane. D. requires the generation of a high-energy compound. E. none of the above
	61.	When DNA is denatured by heating
		A. the absorbance at 260 nM goes down. B. the strands are hydrolyzed to oligonucleotides. C. the base pairs become linked by covalent bonds. D. the viscosity of the solutions is increased. E. the strands will hybridize with complementary DNA or RNA when the solution is cooled.

图 2 以上 1 组 组 4 1 14 14 14 14
國立成功大學之十六學年度生物化學考試(生物化學 試題)第9
, , ,
62. Which of the following statements is INCORRECT?
 A. The principal components of membrane are phospholipids and proteins. B. In the human red cell it has been shown that phosphatidylcholines predominate on the inner leaflet of the bilayer and phosphatidylethanolamines on the outer leaflet. C. Membrane peripheral proteins are generally less hydrophobic than integral proteins. D. The fluid-mosaic model of membrane structures states that most proteins and lipids have free rapid lateral diffusion. E. none of the above
63. Which of the following bases is(are) purine ?
A. adenine B. uracil C. thymine D. none of the above E. all of the above
64. In the purification of enzymes from tissue extracts, it is generally most desinable to obtain the
most desinable to obtain the
A. lowest Km. B. highest yield of protein. C. greatest number of enzyme units. D. highest specific activity. E. smallest requirement for added cofactors.
·選择題(每題二分,均為單選)
(一) (一分) 为两年进)
65. Which of the following otherwise
65. Which of the following statements regarding asparagine is CORRECT?
 A. Asparagine is formed from aspartic acid during post-translational modification of proteins. B. Asparagine is an essential amino acid in human. C. Asparagine is an intermediate in the urea cycle. D. The synthesis of asparagine requires glutamine and ATP. E. The amide nitrogen of asparagine represents the major form of nontoxic transport of ammonia in human.
66. Which of the following statements regarding the urea cycle is INCORRECT?
 A. The synthesis of carbamoyl phosphate is regulated by N-acetylglutamate. B. Carbamoyl phosphate synthetase (use ammonia as substrate) and ornithine transcarbamoylase are located in mitochondrial matrix. C. Argininosuccinate lyase catalyzes the formation of argininosuccinate. D. Four high-energy phosphate bonds are cleaved to make one molecule of urea.
E. The immediate precursor of urea in urea cycle is arginine.
67. The following experiments are carried out using a pure preparation of the enzyme that catalyzes stearate synthesis from acetyl CoA and malonyl CoA in the presence of all the cofactors required for reaction.
67a. If acetyl CoA is supplied in the form of C H ₃ COSCoA, and malonyl CoA (2%) is unlabeled, how many tritium atoms will be incorporated into each molecule of stearate formed?
A. 1 B. 2 C. 3 D. 4 E. 5
67b.If malonyl CoA is supplied in the form of OOCC H ₂ COSCoA, and acetyl (2%) CoA us unlabeled, how many tritium atoms will be incorporated into each molecule of stearate formed?
A. 2 b. 4 C. 8 D. 12

國立成功大學七十六學年度生物化學考試(生物化學 試題)第10页

三角答题

- 68. Proteins are long polymers of amino acids joined by peptide bonds. In aqueous solution at pH=7, most proteins are folded so that the nonpolar amino acid side chains are inside in a nonpolar environment, whereas most of the polar side chains are outside, in contact with water. By inspection of their structures, answer the following briefly:
 - 68a. Decide whether the following amino acids are likely to have their side (2%) chains on the outside or the inside of a globular protein in solution: aspartic acid, phenylalanine, lysine, valine.

68b. Why might glycine be found either inside or outside? (1%)

68c. How might serine, threonine, asparagine and glutamine be accommodated (1%) inside, even though they are polar?

69. A DNA template strand contains the sequence 5'-ATCGTACCGTTGCCTAAC-3'

69a. What is the sequence of mRNA that can be (1%) transcribed from this strand.

69b. What amino acid sequence could be coded by (2%) this sequence? Starting from the 5'end. (Use the genetic code)

Lable 4-1	The geneti	c code'			
First position (5° end)		Secono	position		Third position (3' end)
	U	C	A	C	
	Phe	Ser	Tyr	Сув	υ
U	Phe	Ser	Tyr	Cys	С
	Leu	Ser	Stop toch:	Stop A	A
	Leu	Ser	Stop (amb)	Trp	G
	Leu	Pro	Hu	Arg	Arg U
c	Leu	Pro	His	Arg	C
·	Leu	Pro	Gla	Arg	A
	Leu	Pro	Gln	Arg	G
	lle	The	Asn	Ser	U
	lle Thr Asn	Ser	С		
٨	lic	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	υ
_	Val	Ala	Asp	Gly	С
G	Val	Ala	Glu	Gly	Α
	Val (Met)	Ala	Glu	Gly	G

四問答題

70. How are the three irreversible reactions of glycolysis bypassed (3%) in glyconeogenesis?

國立成功大學七十六學年度生物化學考試(生物化學 試題) 第11 页

- 71. The ε -amino group of lysine has a pKa of 10.5 and the α -amino group has (3%) a pKa of 9.0.
 - 71a. Draw the structure of lysine and indicate the $\epsilon\textsc{-amino}$ group on the structure
 - 71b. What fraction of $\varepsilon\text{-amino}$ groups will be protonated (in the form of $-\text{NH}_3^+)$ at pH=9.5?
 - 71c. Explain why the pKa of the $\epsilon\text{-amino}$ group is higher than that of the $\alpha\text{-amino}$ group?
- 72. If palmitate is the only energy source, explain the efficiency of energy (6%) production for a diabetic patient compared to a normal person?
- 73. Outline a method for determining the relative amounts of glucose oxidized (3%) in a specific tissue by the phosphogluconate pathway vs. glycolysis and the tricarboxylic acid pathways.
- 74. The kinetics of an enzyme are measured as a function of substrate concentration(S) in the presence and absence of $2x10^{-3}M$ inhibitor(I).

[8]	Velocity (µmole/min)		
	without inhibitor	with inhibitor	
0.3x10 ⁻⁵ M	10.4	4.1	
$0.5 \times 10^{-5} M$	14.5	6.4	
1.0x10 ⁻⁵ M	22.5	11.3	
3.0x10 ⁻⁵ M	33.8	22.6	
$9.0 \times 10^{-5} M$	40.5	33.8	

國立成功大學七十六學年度生物化學考試(生物化學 試題) 第12 頁

74a. Calculate Vmax and Km:
(2%) (1) in the absence of inhibitor
(2) in the presence of inhibitor

74b.What type of inhibition is this? (2%)

74c. What is the dissociation constant of this inhibitor? (2%)