			生化	纤						
國	立成功力	大學八十學年	度 入学	考	試(中间代	—— 斜	試題)	共3月第1月	· 1
	路择题 (多	少在笼罩卷上作为 影两分) the following ba		•		5效。				
	A. adeni									
	B. uraci C. thymi									
	D. none	of the above of the above)			•			
2.	If a cult	tured mammalian c t in this cell li		grow in	нат	medium,	which	enzyme :	is	
	B. Dehyd C. HGPR'I D. Ribor	ine kinase or cyt drofolate reducta Tase or thymidine nucleotide reduct nine oxidase or a	se kinase ase							
з.	Which of	the following am	ino acids i	s neces	sary	for IMP	de nov	o synthe	esis?	
	A. Gluta B. Lysir C. Leuci D. Glyci E. Cyste	ine ine								
4.	Which of is INCORE	the following st	atements ab	out the	disc	order of	nucleo	tide met	abolism	
	B. Lesch guani C. Oroti D. Xanth	is a disorder of n-Nyham syndrome ine phosphoribosy ic aciduria is a ninuria is caused of the above	is caused b l transfera disorder of	y the d se) pyrimi	efici dine	lency of metaboli	sm		nthin	
5.		the following st cleotides is cor		out <u>the</u>	de r	novo bios	ynthes	is of		
	synth and A B. Synth C. Aspar D. The f react	esphoribosyl-1-py nesized in reacti ATP nesis of AMP from tate and glycine formation of 5-ph tion is catalyzed mine.	on catalyze inosinic a form part osphoribosy	d by PR cid req of the lamine	PP syluires ring (PRA)	NAD and system of istance.	utili aspart f puri itted	zing rik ic acid. ne. step. T	ose-1-p	
	E. Ín de	novo purine bio bibose phosphate	synthesis, is attached	the rin	g of	purine i	s form	ed befor	e the	
6.	Match the	e enzyme with its	substrate(s) and	produ	ict(s). (14%)			
	Substrate	es <u>Products</u>	En	zymes						
		<u></u>	ру	ruvate	kinas	se				
			6-	phospho	fruct	:o-1-kina:	se			202
			gl	ucose-6	-phos	phatase				
			_		_	ogenase				
					_	ite mutase	e			
	- 10		_		_	uvate car		inaco		
			_	-			LUCKYK	T1102C		
				ruvate		oxylase ite isomei	rase			

زېپىپ سىد

***************************************	phosphoglycerate kinase
	enolase
	aldolase
	phosphoglucomutase
	transaldolase
	transketolase
	CO- CO- CO- CO- CO- CO- CO- CO- CH,OPO, CH,OPO
	NAD' NADH + H' ADP' ATP' GTP' GDP' CO, H ₂ O P ₁ ² - R S T U 'V W X Y Z
-	₹ (8 [%])
many patl	e, is an Fe-containing prosthetic group that is an essential component of proteins, notably hemoglobin, myoglobin, and cytochrome. The overall mway of heme biosynthesis is shown in the following equation. Name the ponents (A, B, D) and coenzyme (C).
	$8\underline{A} + 8\underline{B} \xrightarrow{\text{coenzyme}(C)} 8 \underline{D} \xrightarrow{\text{coenzyme}(C)}$
	4 porphobilinogen condensation > 1 uroporphrinogen III modification h
A	
В —	
С	

國立成功大學八十學年度 入学 考試(中间代谢 試題)共 3 頁

三. 问答题:

- 8. What are the functions of glycogen stores in muscle and liver. (2%)
- 9. What would be the effect of carbohydrate deprivation on the utilization of fats for energy? (3%)
- 10. If yourdiet were totally devoid of carbohydrate, would it be better to consume odd-or even-number fatty acids? Explain. (3%)
- 11. Discuss the regulation of pyruvate dehydrogenase complex. (4%)
- 12. Several equivalents of ATP are required for the biosynthesis of a mole of urea. The ATP is consumed in the formation of two intermediates of the urea cycle, carbamoyl phosphate and argininosuccinate. Give the equation for the formation of these two intermediates. (4%)
- 13. Describe a shuttle scheme for production of cytosolic NADPH that utilizes the NADP-dependent malate enzyme and other enzymes known to be in the mitochondrial and cytosolic compartments. (4%)
- 14. In severe diabetics the acetyl-CoA produced during β oxidation in the liver exceeds the capacity of the citric acid cycle, the excess acetyl-CoA reacts to form the ketone bodies. Although acetyl-CoA is not toxic, the mitochondrion must divert the acetyl-CoA to ketone bodies. Why? (4%)
- 15. Explain why low density lipoprotein (LDL) receptor is important in regulating plasma cholesterol level? (5%)
- 16. The adenylate cyclase is coupled with receptor and activated by the G protein, what is the role of GTPase in the process of CAMP formation? (5%)
- 17. Describe the role of calmodulin in the regulation of glycogenolysis. (5%)
- 18. Describe the molecular mechanism of the regulation of glycolysis and gluconeogenesis by fructose 2,6-bisphosphate. (5%)
- 19. A sample of 3-14C-alanine is injected into a rat. After 1 h the animal is sacrificed, the liver removed, and the lipids extracted. The isolated plamitate contains 14C Explain. What is the location of 14C in the isolated palmitate? Can alanine be used as a precursor for the net synthesis of new palmitate? (6%)
- 20. What is the effect of pernicious anemia on the catabolism of amino acids. (6%)
- 21. The activity of alanine transaminase is usually measured by including an excess of pure lactate dehydrogenase and NADH in the reaction system. The rate of alanine disappearance is equal to the rate of NADH disappearance measured spectrophotometrically. How does this work? explain. (6%)
- 22. Methionine is the principle source of methyl groups that are transferred to many diverse acceptors. It has to be activated as the donor of methyl groups. Give the equation for the formation of the activated methionine in vivo and the structure of the activated methionine. (6%)