
國立成功大學八十二學年度生化研究所考試(有機化学 試題) 第 / 頁

I. Answer the following problems(20%): () 1. Which reagent(s) would you use to carry out the following transformation? (a.) Br2, heat, and light (b.) Cl_2 , FeCl_3 (c) KMnO₄, OH⁻, heat (then H_3O^+) (d) $\text{HNO}_3/\text{H}_2\text{SO}_4$ (e) $\text{SO}_3/\text{H}_2\text{SO}_4$ () 2. Which of the following procedures would not yield 3-pentanone as a major product?
a) CH₃CH₂CN + CH₃CH₂MgBr→→ H₃C→→ b) $CH_3CH_2COOH + 2 CH_3CH_2Li \longrightarrow H_2O \rightarrow$ c) CH3CH2CN + CH3CH2Li — 出30+ d) CH3CH2COCI+ (CH3CH2) 2 CuLi e) CH₃CH₂COOH + CH₃CH₂MgBr → H₃O[†] →) 3. In the reaction of carbonyl compounds with ${\rm LiAIH_4}$, the effective reducing species is: a) Li⁺ b) Al⁺³ c) AlH4 d) AlH₃ e) H) 4. What would be the major product of the following reaction? сн3он CH₃ONa 55°C d) CH3CH2-C=CH2 e) CH₃CH₂-CH(CH₃)₂ () 5. Treating (Me)₃C-Cl with a mixture of $\rm H_2O$ and MeOH at room temperature would yield: a) ${
m CH_{2}}$ =C(CH3) $_2$ b) (CH3) $_3$ COH c) (CH3) $_3$ COCH $_3$ d) All of these e) None of these () 6. S_N1 reactions of the type, $Nu^- + RL \longrightarrow Nu-R + L^-$, are favored: a) when tertiary substrates are used. b) by using a high concentration of the nucleophile. c) when L is a strong base. d) by use of a non-polar solvent. e) by none of the above. () 7. How many ^{13}C signals would you expect from $\text{C}_6\text{H}_5\text{OCH}_3$? a) Four b) Two c) Three d) Seven e) Five () 8. A compound with the molecular formula C4H10O gives a 1H NMR spectrum consisting only of a quartet centered at δ 3.5 and a triplet at δ 1.1. The most likely structure for the compound is: ĆH3 a) (CH₃)₃C-OH b) c) CH3CH2CH2CH2OH d) CH3CH2OCH2CH3 e) CH₃CHCH₂OH CH₃ снзосненз () 9. What would be the final product? P₄O₁₀ (1) CH₃MgI C6H5CH2CONH2 product heat (2) H₃O+ a) C₆H₅CH₂CO₂CH₃ b) $C_6H_5CH_2CH_2NHCH_3$ c) C₆H₅CH₂COCH₃

CH₃
() 10. What is the principal product when aniline is treated with sodium nitrite and hydrochloric acid at 0-5°C and this mixture is added to *p*-ethylphenol?

e) C₆H₅CH₂CH=NCH₃

d) C₆H₅CH₂ÇHC=N

II. When a solution of 1,3-butadiene in CH₃OH is treated with chlorine, the products are CICH₂CH=CHCH₂OCH₃ (30%) and CICH₂CH(OCH₃)CH=CH₂ (70%). Write a mechanism that accounts for their formation. (6%)

生化研究所考試(有機化学 國立成功大学八十二学年度 試題)

- III. What would be the major product formed in the Baeyer-Villiger oxidation of 3-methyl-2-butanone?(4%)
- IV. a) Write resonance structures for the phthalimide anion that will account for the acidity of phthalimide. b) Would you expect phthalimide to be more or less acidic than benamide? Why? (6%)
- When acrolein reacts with hydrazine, the product is a dihydropyrazole:

CH2=CHCHO + H2N-NH2 ·

Suggest a mechanism that explains this reaction. (6%)

VI. Propose a strcture for compound I whose ¹H NMR and IR spectra are given in the following Figs.

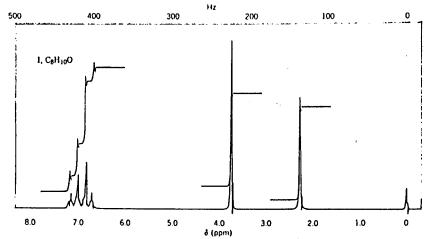


FIGURE 4. The 'H NMR spectrum of compound I

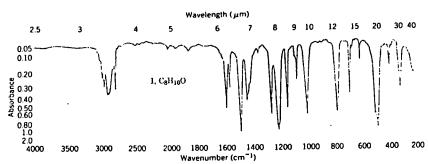
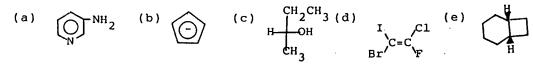
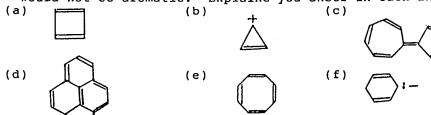



FIGURE 2. The IR spectrum of compound I

VII. Name (IUPAC system in English) or draw the structure of each of the following compounds or ion. (20%).



- (f) 18-crown-6 (h)trans-2-methylcyclohexanecarboxylic acid (g) DMF
- (i) NBS (j)Tetrakis(1,1-dimethyethyl)tetrahedrane
- VIII. For each of the following questions, assume that all measurements are made in 10-cm polarimeter sample containers. (4%).

 (a) A solution of 0.4 g of optically active 2-butanol in 10 ml of water displays an optical rotation of -0.56°. What is its specific rotation? (b) The specific rotation of sucrose is +66.4°. What would be the
 - observed optical rotation containing 3 g of sucrose in 10 ml of water?
- IX. Outline a simple chemical test that would distinguish between the members of each of the following compounds: 1,3-butadiene, butane, 1-butyne and 4-bromobutene. (8%).
- X. Cyclohexane has two stable conformations; chair and boat form, which one is more stable? Please describe with Newman's projection. (6%).

國立成功大學八十一學年度 机研究所考試(有核化学 試題)第3月

- XI. Rank the members of each species below in the order of (1) basicity, (2) nucleophilicity, and (3) leaving-group ability. Briefly explain you answers. H₂O, HO, CH₃CO₂. (6%)
- XII. Indicate whether each of the following compounds or ions would or would not be aromatic. Explaine you anser in each instance. (6%)
 (a) (b) + (c)

