國立成功大學八十四學年度研究所以學考試(中間代谢試題)共 十頁

考生注意事項:所有考題務必在答案卷上作答。凡在問題卷上作答者無效。

一、選擇題(單選,每題二分,答案錯倒扣0.5分)

- 1. Although both enzymes and inorganic catalysts can catalyze chemical reactions, but they are different because enzymes:
 - A. decrease the activation energy of the reaction.
 - B. could not affect the equilibrium point of the reaction.
 - C. form complex with the reactants.
 - D. have specificity toward a single reactant.
 - E. are not utilized in the reaction.
- 2. Both water and glucose conatain -OH group which can be phosphorylated with ATP catalyzed by hexokinase. However, glucose is much more reactive than water, why?
 - A. Glucose has more -OH groups per molecule than does water.
 - B. Glucose binds better to the enzyme and induces a conformational change in hexokinase that brings active site into position.
 - C. Water normally will not reach the active site because it is hydrophobic.
 - D. Water and ATP compete for the enzyme.
 - E. Glucose is bigger than water.
- 3. A molecule inhibits enzyme activity by binding to a site other than the catalytic site is called:
 - A. a competitive ihhibitor.
 - B. an allosteric inhibitor.
 - C. a stereospecific agent.
 - D. a noncompetitive inhibitor.
 - E. a transition-state analog.

國立成功大學人+10 學年度研究的入学考試(中間代) 試題)共 + 頁

4. The K_m for the following set of data is_____

5000

Substrate concentration (μM), Initial velocity ($\mu mol/min$) A. 25 B. 2 49 C. 8 178 D. 50 320 100 350 1000 355

5. The $\Delta G^{o'}$ for reaction A \rightarrow B is -30kj/mol. The reaction is started with 20 mmol of A; no B is initially present. After 24 hours, analysis reveals the presence of 4 mmol of B, 16 mmmol of A. Which is the most likely explanation?

352

- A. A and B have reached equilibrium concentrations.
- B. Formation of B is thermodynamically unfavorable.
- C. The result described is impossible, given the fact that $\Delta G^{o'}$ is 30 kj/mol.
- D. B formation is kinetically slow; equilibrium has not been reached by 24 hours.
- E. An enzyme has shifted the equilibrium toward A.
- 6. If the equilibrium constant for the reaction ($A+B\rightarrow C+D$) is a large number, what will be the standard free energy change for the reaction?
 - A. A small, negative value.
 - B. A large, negative value.
 - C. A small, positive value.
 - D. A large, positive value.
 - E. zero.

國立成功大學人十四學年度研究所以学考試(中間代词) 試題)共十頁

- 7. Oxidation-reduction reactions always involve:
 - A. transfer of hydrogens.
 - B. formation of water.
 - C. mitochondria.
 - D. transfer of electrons.
 - E. transfer of oxygens.
- 8. The conversion of one mole of fructose-1,6-bisphosphate to two moles of pyruvate by the glycolytic pathway results in a net formation of:
 - A. one mole of NAD+ and two moles of ATP.
 - B. one mole of NADH and one mole of ATP.
 - C. two moles of NADH and two moles of ATP.
 - D. two moles of NADH and four moles of ATP.
 - E. two moles of NAD+ and four moles of ATP.
- 9. If fructose labeled with ¹⁴C at C-1 were metabolized in the liver, the first radioactive pyruvate formed would be lableled in:
 - A. C-1.
 - B. C-2.
 - C. C-3.
 - D. C-1 and C-3.
 - E. C-1, C-2, and C-3.
- 10. Epinephrine triggers an increase rate of glycogen breakdown in muscle by causing:
 - A. activation of hexokinase.
 - B. activation of phosphofructokinase-1.
 - C. conversion of glycogen phosphorylase b to glycogen phosphorylase a.
 - D. the pasteur effect.
 - E. none of the above.

- 11. Which of the following is not required for the oxidative decarboxylation of pyruvate to form acetyl-CoA?
 - A. NAD+.
 - B. lipoic acid.
 - C. ATP.
 - D. CoA-SH.
 - E. FAD.
- 12. Oxidation of one mole of acetyl-CoA via the citric acid cycle results in :
 - A. production of one mole of citrate.
 - B. consumption of one mole of oxaloacetate.
 - C. production of 7 moles of ATP.
 - D. production of 2 moles of CO₂.
 - E. production of one mole of succinate.
- 13. Entry of acetyl-CoA into the citric acid cycle is decreased when:
 - A. the ratio of [ATP] / [ADP] is high.
 - B. [AMP] is high.
 - C. the ratio of [NAD+] / [NADH] is high.
 - D. NADH is rapidly oxidized through the respiratory chain.
 - E. none of the above.
- 14. Free fatty acids in the bloodstream are:
 - A. bound to hemoglobin.
 - B. present at levels that are independent of epinephrine.
 - C. carried by the protein serum albumin.
 - D. freely soluble in the aqueous phase of the blood.
 - E. bound to a nonprotein component.
- 15. Transport of fatty acids from the cytoplasm to the mitochondrial matrix requires:
 - A. ATP, coenzyme A, and hexokinase.
 - B. ATP, carnitine, and coenzyme A.
 - C. carnitine, coenzyme A, and hexokinase.
 - D. ATP, carnitine, and pyruvate dehydrogenase.
 - E. ATP, coenzyme A, and pyruvate dehydrogenase.

- 16. The removal of two carbon units from a long chain fatty acid by β -oxdiation will result in the net formation of:
 - A. 1 FADH2 and 1 NADH.
 - B. 2 FADH2 and 2 NADH.
 - C. 1 FADH2 and 1 NADPH.
 - D. 2 FADH2, 2 NADH and 1 ATP.
 - E. 1 FADH2, 1 NADH and 1 ATP.
- 17. In which of the following reactions the pyridoxal phosphate is involved as a cofactor?
 - A. Methylation.
 - B. Acetylation.
 - C. Reduction.
 - D. Desulfuration.
 - E. Transamination.
- 18. If a person's urine contains unusually high concentrations of urea, which of the following diets has he or she probably been eating recently?
 - A. very high carbohydrate, very low protein.
 - B. very low carbohydrate, very high protein.
 - C. very high fat, very low protein.
 - D. very high fat, high carbohydrate, no protein.
 - E. very high fat, high carbohydrate, low protein.
- 19. An enzyme used in both glycolysis and gluconeogenesis is:
 - A. hexokinase.
 - B. glucose-6-phosphatase.
 - C. 3-phosphoglyucerate kinase.
 - D. phosphofructokinase-1.
 - E. pyruvate kinase.

國立成功大學八十四學年度研究的入学考試(中間代詞 試題)等于 頁

- 20. Which of the following compounds cannot serve as the starting material for the synthesis of glucose via gluconeogenesis?
 - A. glycerol.
 - B. α-ketoglutarate.
 - C. acetate.
 - D. oxaloacetate.
 - E. lactate.
- 21. Which of the following is true of glycogen synthesis and breakdown?
 - A. Synthesis is catalyzed by the same enzyme that catalyzes breakdown.
 - B. The immediate product of glycogen breakdown is free glucose.
 - C. Phosphorylation activates the enzyme responsible for breakdown, and inactivates the synthetic enzymes.
 - D. Under normal circumstances glycogen synthesis and glycogen breakdown occur simultaneously and at high rates.
 - E. The glycogen molecule " grows" at its reducing end.
- 22. Glucagon (in liver) and epinephrine (in muscle):
 - A. activate glycogen phosphorylase and inactivate glycogen synthase.
 - B. inhibit glycogen synthesis and activate glycogenolysis.
 - C. act by raising the concentration of cyclic AMP.
 - D. oppose the effects of insulin on these tissues.
 - E. do all of the above.
- 23. The rate-limiting step in fatty acid synthesis is:
 - A. formation of acetyl-CoA from acetate.
 - B. the reaction catalyzed by acetyl-CoA carboxylase.
 - C. condensation of acetyl-CoA and malonyl-CoA.
 - D. the reduction of acetoacetyl group to a β -hydroxybutyryl group.
 - E. formation of malonyl-CoA from malonate and coenzyme A.

- 24. In comparing fatty acid synthesis with β -oxidation of fatty acids, which of the following statements is incorrect?
 - A. Fatty acid degradation is catalyzed by cytosolic enzymes; fatty acid synthesis by mitochondrial enzymes.
 - B. A thioester derivative of crotonic acid(trans-2-butenoic acid) is an intermediate in the synthetic path, but not in the degradative path.
 - C. A thioester derivative of D-β-hydroxybutyrate is an intermediate in synthetic path, not in the degradative path.
 - D. The condensation of two moles of acetyl-CoA in the presence of a crude extracts is more rapid in bicarbonate buffer than in phosphate buffer at the same pH; the cleavage of acetoacetyl-CoA proceeds equally well in either buffer.
 - E. fatty acid biosynthesis uses exclusively NADPH, whereas β -oxidation uses exclusively NAD⁺.
- 25. All glycerol-containing phospholipids are synthesized from:
 - A. mevalonate.
 - B. gangliosides.
 - C. ceramide.
 - D. phosphatidic acid.
 - E. glycerol.
- 26. Which of the following amino acids is not essential in the diet of humans?
 - A. lysine.
 - B. phenylalanine
 - C. valine.
 - D. threonine.
 - E. proline.
- 27. The hormones epinephrine and norepinephrine are derived biosynthetically from:
 - A. tyrosine.
 - B. histidine.
 - C. tryptophan.
 - D. arginine.
 - E. isoleucine.

國立成功大學八世學年度研究的以管考試(中間代词は 試題)共一頁

- 28. An energy source generally not used by brain tissue is:
 - A. fatty acids.
 - B. glucose.
 - C. ketone bodies.
 - D. amino acids.
 - E. all of the above are used as fuels.
- 29. In skeletal muscle:
 - A. large quantities of triacylglycerol are stored as fuel.
 - B. phosphocreatine can substitute for ATP as the source of energy for muscle contraction.
 - C. stored muscle glycogen can be converted to glucose and released to replenish blood glucose.
 - D. at rest, fatty acids are the preferred fuel.
 - E. at rest, ketone bodies are the preferred fuel.
- 30. When blood glucose is abnormally high, the pancreas releases:
 - A. insulin.
 - B. glucagon.
 - C. epinephrine.
 - D. trypsin.
 - E. glucose.
- 31. When inositol-1,4,5-triphosphate (IP₃) binds to its specific intracellular receptor:
 - A. a phospholipase in the plasma membrane is activated.
 - B. Ca⁺⁺ is released from the endoplasmic reticulum into the cytosol.
 - C. GTP replaces GDP on a Gs protein.
 - D. the intracellular concentration of cAMP rises.
 - E. there is no intracellular receptor for IP₃.
- 32. All of the oxidative steps of the citric acid cycle are linked to the reduction of NAD⁺ except:
 - A. isocitrate dehydrogenase.
 - B. malate dehydrogenase.

國立成功大學八十四學年度研究的入学考試(中間代節)

- C. α-ketoglutarate dehydrogenase complex.
- D. succinate dehydrogenase.
- E. all of the above are linked to the reduction of NAD+.
- 33. In eukaryotic cells, the enzymes of glycolysis are in the and the enzymes of the citric acid cycle are in the
 - A. inner mitochondrial membrane; mitochondrial matrix.
 - B. cytosol; mitochondrial matrix.
 - C. mitochondrial matrix; cytosol.
 - D. cytosol; inner mitochondrial membrane.
 - E. inner mitochondrial membrane; cytosol.
- 34. Which of the following statements about energy conservation in the mitochondrion is CORRECT.
 - A. for oxidative phosphorylation to occur, it is not essential to have a closed membranous structure with an inside and an outside.
 - B. The yield of ATP per mole of oxidizable substrate is constant regardless of which substrate is oxidized.
 - C. Any drug that inhibits the ATP synthase will not inhibit the flow of electrons down the chain of carriers.1
 - D. Uncouplers (such as dinitrophenol) have exactly the same effect on electron transfer as inhibitors such as cyanide; both block further electron transfer to oxygen.
 - E. All of the above are correct.
- 35. The enzyme system for adding double bonds to saturated fatty acids requires all of the following EXCEPT:
 - A. molecular oxygen.
 - B. cytochrome b₅
 - C. ATP.
 - D. NADPH.
 - E. a mixed-function oxidase.

- B. Short-answers questions.(10% each)
- 1. Compare the efficiency of energy production in diabetic patients and in normal person.
- 2. Acetyl-CoA labeled with ¹⁴C in both of its acetate carbons atoms is incubated with unlabeled oxaloacetate and a crude tissue preparation capable of carrying out the reactions of the citric acid cycle. Trace the ¹⁴C label in oxaloacetate molecule after one turn of the cycle.
- 3. What is respiratory control in mitochondria? What is the purpose of this control mechanism?