86 學年度 國立成功大學 碩士班招生考試 生物化学研究 頁 中間代額 所 試題 第 頁

一、選擇題(單選,共二十四題,每題二分,答錯倒扣 0.5 分)

- 1. Ketogenesis occurs primarily in
 - A. brain
 - B. heart
 - C. liver
 - D. intestine
 - E. lung
- 2. One major function of the HDLs is to
 - A. deliver cholesterol from the liver to non-hepatic tissues.
 - B. catalyze the synthesis of LCAT.
 - C. catalyze the synthesis of ACAT.
 - D. transfer cholesterol from peripheral tissues to the liver.
 - E. transfer cholesterol from chylomicrons to VLDLs.
- 3. Fatty acids enter the mitochondrial matrix for oxidation:
 - A. as free fatty acid
 - B. citrate serves as a carrier
 - C. complexed with acyl carrier protein
 - D. complexed with carnitine
 - E. in the form of acyl-CoAs directly by active transport
- 4. Lipid storage diseases result from:
 - A. abnormal or missing enzymes involved in the synthesis of complex glycolipids.
 - B. abnormal or missing enzymes involved in the synthesis of fatty
 - C. abnormal or missing enzymes involved in the catabolism of fatty acids.
 - D. defective production of lysosomes that are involved in lipid catabolism.
 - E. abnormal or missing of enzymes involved in the catabolism of complex glycolipids.

(背面仍有題目,請繼續作答)

- 5. Your patient is a 55-year-old man with abdominal pain. Blood tests reveal very high concentrations of chylomicron, even after an overnight fast. Triglycerides are also elevated. What is the probable defect in your patient?
 - A. He has a deficiency of apolipoprotein C-II.
 - B. He has a deficiency of apolipoprotein B-48.
 - C. He has a deficiency of apolipoprotein B-100.
 - D. He has a deficiency of LDL receptor.
 - E. He has a deficiency of HMG-CoA reductase.
- 6. The major function of bile acids is to:
 - A. form the core of HDLs, allowing them to remove cholesterol from membranes.
 - B. form the surface of VLDLs in order to prevent loss of cholesterol.
 - C. provide precursor carbons for cholesteryl ester synthesis
 - D. aid in the emulsification of dietary lipids.
 - E. form the core of VLDLs to which cholesteryl esters attach.
- 7. During fasting or starvation, the brain receives energy in the form of
 - A. acetyl-CoA
 - B. acetoacetyl-CoA
 - C. hydroxylmethylglutaryl-CoA
 - D. γ-hydroxybutyrate
 - E. glucose
- 8. Familial hypercholesterolemia is characterized by
 - A. an increase in cholesterol biosynthesis beyond the needs of the body.
 - B. defects in LDL receptor structure and/or function.
 - C. defects in the synthesis of the apoprotein responsible for activation of lipoprotein lipase.
 - D. an increase in the hepatic synthesis of VLDLs.
 - E. a decrease in the ability of liver take up chylomicron remnants.

- 9. Nucleotides are derived from nucleosides by
 - A. the addition of phosphate to the 3'-OH of the ribose
 - B. the addition of phosphate to the 5'-OH of the ribose
 - C. the addition of ribose to a purine or pyrimidine base
 - D. the removal of phosphate to the 3'-phosphate of the ribose
 - E. the removal of phosphate from the 5'-phosphate of the ribose
- The purine nucleotide cycle is the mechanism by which skeletal muscle acquires fumarate, the TCA cycle intermediate, during;
 - A. the interconversion of GMP to AMP
 - B. the interconversion of GMP to IMP
 - C. the interconversion of ATP to GTPP
 - D. the interconversion of IMP to AMP
 - E. the interconversion of ADP to GDPP
- 11. Catabolism of deoxythymine can feed the TCA cycle in the form of:
 - A. malonyl-CoA
 - B. succinyl-CoA
 - C. acetyl-CoA
 - D. fumarate
 - E. aspartate
- 12. Synthesis of PRPP is predominantly controlled by which nucleotide
 - A. TTP
 - B. GTP
 - C. CTP
 - D. ATP
 - E. UTP
- 13. Folate analogs are useful anticancer drugs because:
 - A: they inhibit thymidine kinase
 - B. they inhibit ribonucleotide reductase by increasing the production of dATP
 - C. they inhibit thymidylate synthase

3

(背面仍有題目,請繼續作答)

86 學年度 國立成功大學 生物化学研究所 中間代湖 試題 共 十 頁 碩士班招生考試 生物化学研究所 中間代湖 試題 第 四 頁

- D. they activate purine nucleoside phosphorylase, thereby inhibiting purine salvage
- E. they inhibit dihydrofolate reductase
- 14. The conversion of one mole of glyceraldehyde-3-phosphate to one mole of pyruvate by the glycolytic pathway results in a net formation of
 - A. one mole of NADH and one mole of ATP.
 - B. two moles of NADH and one mole of ATP.
 - C. one mole of NADH and two moles of ATP.
 - D. two moles of NADH and four moles of ATP.
 - E. two moles of ATP.

15. Glycogen phosphorylase

- A. catalyzes a hydrolytic cleavage of $\alpha(1 \rightarrow 4)$ bonds.
- B. catalyzes a cleavage of $\beta(1\rightarrow 4)$ bonds.
- C. uses glucose-6-phosphate as a substrate.
- D. is activated by phosphorylation.
- E. none of the above.
- 16. Which of the following would occur upon addition of 2,4-dinitrophenol to a suspension of mitochondria carrying out oxidative phosphorylation?
 - A. phosphorylation reaction would proceed.
 - B. oxygen consumption would decrease.
 - C. oxygen consumption would increase.
 - D. substrate oxidation would not proceed.
 - E. none of the above.

17. Fructose-2,6-bisphosphate

- A. is a positive modulator of phosphofructokinase-1.
- B. is synthesized by the enzyme phosphofructokinase-1.
- C. inhibits glycolysis in liver.
- D. stimulates gluconeogenesis in liver.
- E. activates cAMP-dependent protein kinase.

- 18. In the urea cycle, ornithine transcarbamoylase catalyzes:
 - A. formation of urea from arginine.
 - B. formation of ornithine from citrulline and other reactants.
 - C. transamination of arginine.
 - D. formation of citrulline from ornithine and other reactants.
 - E. cleavage of urea to ammonia.
- 19. The metabolic defect of human genetic disease, maple syrup urine disease, involves:
 - A. transamination of amino acids.
 - B. oxidative decarboxylation.
 - C. a deficiency of the vitamin pyridoxal.
 - D. uptake of branched chain amino acids into liver.
 - E. synthesis of branched chain amino acids.
- 20. The metabolic defect of human genetic disease phenylketonurea involves:
 - A. synthesis of phenylketones.
 - B. inability to catabolize ketone bodies.
 - C. inability to convert phenylalanine to tyrosine.
 - D. uptake of phenylalanine.
 - E. inability to catabolize phenylketones.
- 21. Serine and cysteine may enter the citric acid cycle after conversion to :
 - A. oxaloacetate.
 - B. succinate.
 - C. succinly-CoA.
 - D. propionyl-CoA.
 - E. pyruvate.
- 22. Which of the following amino acids are pure glycogenic?
 - 1. histidine.
 - 2. valine

5

86 學年度 國立成功大學 电制化设计 試題 共一頁 碩士班招生考試 生物化学研究所 中間代谢 試題 第六頁

- 3. proline
- 4. isoleucine
- 5. glutamine
- A. 1 and 5
- B. 2 and 4
- C. 2, 3 and 4.
- D. 1, 3 and 5.
- E. 2,4 and 5
- 23. The amino acid that does not derive its carbon skeleton, at least in part, from $\alpha\text{-ketoglutarate}$ is:
 - A. glutamate.
 - B. lysine.
 - C. proline.
 - D. arginine.
 - E. glutamine.
- 24. $\delta\text{-aminolevulinic}$ acid is formed from :
 - A. serine and succinyl-CoA.
 - B. serine and glycine.
 - C. threonine and succinyl-CoA.
 - D. threonine and acetyl-CoA.
 - E. glycine and succinyl-CoA.
- 二、選擇題 (單選,共七題,每題二分,答錯倒扣 0.5 分)

Answer the following questions using the key outlined below:

- (A) if 1, 2, and 3 are correct
- (B) if 1 and 3 are correct
- (C) if 2 and 4 are correct
- (D) if only 4 is correct
- (E) if all four are correct

- 25. Types of covalent modifications that control the activities of enzymes include
 - 1. phosphorylation.
 - 2. adenylylation.
 - 3. ADP-ribosylation.
 - 4. glycosylation.
- 26. The reaction in glycolysis that results in the formation of an energy-rich compound is catalyzed by
 - 1. pyruvate kinase.
 - 2. enolase.
 - 3. phosphoglycerate kinase.
 - 4. glyceraldehyde-3-phosphate dehydrogenase.
- 27. The oxidative decarboxylation of pyruvate to acetyl-CoA by pyruvate dehydrogenase requires the participation of
 - 1. NAD+.
 - 2. FAD.
 - 3. lipoic acid.
 - 4. thiamine pyrophosphate.

28. Citrate

- 1. acts to transport acetyl-CoA to the cytosol from the mitochondrial matrix.
- 2. regulates glycolysis by activating phosphofructokinse-1.
- 3. stimulates synthesis of fatty acids.
- 4. inhibits acetyl-CoA carboxylase.
- 29. Activity of the citric acid cycle is decreased when
 - 1. [AMP] is high.
 - 2. the ratio of [NADH]/[NAD+] is high.
 - 3. [oxaloacetate] is high.
 - 4. the ratio of [ATP]/[ADP] is high.

7

(背面仍有題目,請繼續作答)

86 學年度 岡 工 瓜 二 三 頭士班招生考試 生物化学研究所中間代额 頁 試題 第 八頁

- 30. Which of the following compounds can serve as the starting material for the synthesis of glucose via gluconeogenesis?
 - 1. Oxaloacetate
 - 2. Acetate
 - 3. Glycerol
 - 4. Palmitate
- 31. Glucagon in liver
 - 1. acts by increasing the concentration of cAMP.
 - 2. activates glycogen phosphorylase and inactivates glycogen synthase.
 - 3. inhibits glycogen synthesis.
 - 4. has the same effect as insulin.
- 三、選擇題(單選,共四題,每題一分,答錯倒扣 0.25 分)
- 32. Which of the following statements about pentose phosphate pathway is INCORRECT?
 - A. It is a reductive pathway; it produces NADPH.
 - B. It generates CO₂ from C-6 of glucose.
 - C. It is active in lactating mammary gland.
 - D. It provides precursors for the synthesis of nucleic acids.
 - E. None of the above.
- 33. Glucose-6-phosphatase is absent in the
 - A. liver.
 - B. kidney cortex.
 - C. muscle.
 - D. small intestine.
 - E. none of the above.

图 學年度 國立成功大學 研究 所 中間代詞 試題 共 十 頁 碩士班招生考試 生物化学研究 所 中間代詞 試題 第 九 頁

- 34. Which one of the following enzymes catalyzes the formation of oxaloacetate during gluconeogenesis.
 - A. Malic enzyme
 - B. Pyruvate kinase
 - C. Pyruvate dehydrogenase
 - D. Pyruvate carboxylase
 - E. None of the above
- 35. Which of the following amino acids is NOT essential in the diet of humans?
 - A. lysine
 - B. phenylalanine
 - C. valine
 - D. cysteine
 - E. threonine
- 四、簡答題及問答題
- 36. Melittin is a protein in bee venom that activates phospholipaseA₂. How might this effect contribute to the local inflammation that is caused by bee stings? (3%)
- 37. What would be the effect on fatty acid synthesis of an increase in intramitochondria oxaloacetate level? Briefly explain your answer. (3%)
- 38. Explain the biochemical basis for the fact that one can synchronize cell populations by treating them with deoxythymine. (3%)

- 39. Your patient has breast cancer. You are treating her with 5-fluorouracil (5-FU). She has very severe neurological reaction to 5-FU. Her urinary of uracil and thymine are very high. (a) Name the defective enzyme and show the reaction that it catalyzes. (b) Show the pathways in which this enzyme plays a part. (c) Why do you think the 5-FU was so toxic for your patient? (5%)
- 40. Describe the biological roles of the following molecules in the cell ? (20%)
 - A. inositiol triphosphate
 - B. glucagon
 - C. diacylglycerol
 - D. fructose 2,6-bisphosphate
 - E. G protein