<u>86</u> 4	學年度	國立成功大學碩士班招生考試	生理学	为有	九所	艺物似	学	試題	共第	3 頁		
		7,將答案寫在答案絲	氏上.					Notice with the second				
一. 填	充題 (每	題二分)										
1.	The pranimal	The product of anaerobic glycolysis, lactate, is produced in the tissue of animals.										
2.	The co	emplete oxidation of py	ruvate occu	rs i	n the	•						
3.	In the	In the presence of aldolase, D-glyceraldehyde-3-phosphate and dihydroxyacetone phosphate are converted to										
4. In the TCA cycle, oxidative decarboxylation of α-ketoglutarate produces												
5.	Unbranched fatty acids with an odd number of carbon atoms are usually converted, after β-oxidation, to											
6.	Micelles are small, essentially spherical aggregates of lipid in which hydrophobic regions are on the inside and hydrophilic regions are on the outside. During digestion and absorption they are first observed in the											
7.	An end membr	An enzyme located on the outer mitochondrial membrane rather than the inner mitochondrial membrane is										
8.	The tra	The transfer of ADT to ATP across the mitochondrial membrane involves a transfer of one ADP in for each ATP that comes out, this type of phenomena is called										
9.	The fo	The formation of carbohydrates from non-carbohydrate precursors such as amino acids and lactic acid is called										
10). The re	ducing power for fatty	acid synthes	sis c	comes fi	om						
11		tracellular location of f										
12	2. Sodiun glycoly	Sodium phosphate or inorganic phosphate is picked up by the substance in one reaction of glycolysis and one reaction of the TCA cycle. The enzymes that catalyze those reactions are:										
	A. he B. tric	A. hexokinase and succinyl thiokinase										
13	Ribofla	Riboflavin in a nucleotide form is involved in one reaction of the TCA cycle. The enzyme that catalyzes that reaction is:										
		uccinyl thiokinase accinic dehydrogenase		B. D.	malic isociti	dehydrogen ic dehydrog	ase enase					
14	. Thiami substra	Thiamine is involved in two reactions in the mitochondria and one cytosol reaction. The substrates for those reactions are:										
	A. su C. ox	ccinate and fumarate aloacetate and pyruvat	e I	3. D.	α-ketog	glutarate an	d pyruvat	e				
15.	rructos	Glucose-1-phosphate -> glucose-6-phosphate $\Delta G^{\circ'} = -1.7$ Kcal/mole Fructose-5-phosphate -> glucose-6-phosphate $\Delta G^{\circ'} = -0.4$ Kcal/mole Glucose-1-phosphate -> fructose-6-phosphate. What is the $\Delta G^{\circ'}$?										
	A2.	1 Kcal/mole		3,		al/mole	•					

_	1207 1 1 1 10	· · · · · · · · · · · · · · · · · · ·					
86 學年度	國立成功大學	1-94	446113	計題	北	3	育
W T 1 /2	碩士班招生老試	生生生气气					ス
	碩士班招生考試	ナーナーナーリカー	1000 t	m/1/5	笜	7/	百
			J		7		ᆽ

16. Which citric acid cycle intermediate is the immediate precursor to asparate?

A. pyruvate

B. oxaloacetate

C. α-ketoglutarate

D. isocitrate

17. After full metabolism of a fatty acid it was determined that the total "hydrogen value" (i.e., the hydrogen atoms lost in the reaction) was 104, 34 of which were removed by FAD dehydrogenases, and 70 of which were removed by NAD+ dehydrogenases. If all of the hydrogen atoms received by the above systems were funneled into electron transport system, what will be the total energy yield in moles of ATP?

A. 34

B. 70

C. 139

D. 156

18. Pyruvate labeled with ¹⁴C in carbon atom 2 is incubated with liver tissue. Which carbon atoms of β-hydroxy-β-methyl-glutaryl CoA will become labeled rapidly?

A. 1, 2

B. 1, 3

C. 1, 2, 3

D. 1, 3, 4

三. 問答題 (19-25 題,每題二分)

- 19. What is the main function of the glyoxylate cycle?
- 20. What is the enzyme that catalyzes the following reaction?

 Pyruvate + CO₂ + ATP Acetyl CoA oxalacetate + ADP + Pi
- 21. What is the enzyme that catalyzes the following reaction?

 Oxaloacetate + GTP $\xrightarrow{Mg^{++}}$ phosphoenopyruvate + CO₂ + GDP
- 22. Pyruvic acid labeled with the isotope ¹⁴C in the carboxyl atom was injected into a rat. The rat was sacrificed 30 minutes later and some glycogen isolated from the liver. The glycogen was hydrolyzed to D-glucose by boiling in dilute HCl. Which carbon atoms of the resulting D-glucose would be most strongly labeled with ¹⁴C?
- 23. How many high-energy phosphate bonds are required to add one glucose residue to a glycogen molecule in the liver starting from free glucose?
- 24. To form palmitic acid from eight mitochondrial acetyl CoA requires how many ATP?
- 25. A sample of L-alanine labeled with ¹⁴C in the β-carbon atom is injected into a rat. The animal is sacrificed one hour later and a sample of palmitic acid isolated from the liver lipids. Which carbon atoms of the palmitic acid will be most strongly labeled?
- 26. Under optimal conditions for growth, an E. coli cell will divide around every 20 minutes.
 - A. If no cells died, how long would it take a single *E. coli* cell, under optimal conditions in 10-liter culture flask, to reach its maximum cell density of 10¹⁰ cells/ml (a "saturated" culture)? (5%)
 - B. Assuming that optimal conditions could be maintained, how long would it take for the total volume of the cells alone to reach 1 km³? (10%)
- 27. What are the ionic strengths of 1.0 M solution of NaCl, (NH₄)₂SO₄, and K₃PO₄? (6%) In which would a protein be expected to be most soluble; least soluble? (4%)

國立成功大學 86 學年度 共る 頁 北约心学 碩士班招生考試 第3 頁

28. A peptide is specified by the following DNA antisense strand. Assume that translation starts after the first initiation codon.

5' - TCTGACTATTGAGCTCTCTGGCACATAGCA - 3'

- Based on the DNA antisense strand, please write down the correspondent mRNA sequence. (5%)
- Based on the mRNA sequence you have written down, please circle the initiation codon В. and stop codon for translation. (10%)
- 29. What would the effect of the following agents on the melting curve of an aqueous solution of duplex DNA? Explain

A. Decreasing the ionic strength of the solution. (5%)

B. Squirting the DNA solution, at high pressure, through a very narrow orifice.