編號: 321

國立成功大學 104 學年度碩士班招生考試試題

系所組別:環境醫學研究所丙組

考試科目:統計學

第1頁,共2頁

考試日期:0212,節次:2

※考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

A. (10% with 5% each)

Prove that if A and B are independent events,

- 1. \vec{A} and B are independent.
- 2. \overline{A} and \overline{B} are independent.

B. (10%)

Suppose that A and B are independent events associated with an experiment. If the probability that A or B occurs equals 0.6. The probability that A occurs equals 0.4. What is the probability that B occurs.

C. (10%)

We have two urns, 1 and 2, each with two drawers. Urn 1 has a gold coin in one drawer and a silver coin in the other drawer. Urn 2 has a gold coin in each coin. One urn is chosen at random; then a drawer is chosen at random from the chosen urn. The coin found in this drawer is a gold coin. What is the probability that the coin came from urn 2?

D. (10%)

If the random variable K is uniformly distributed over (0, 5), what is the probability that the roots of the equation $4x^2 + 4xK + K + 2 = 0$ are real?

E. (10% with 5% each)

Assume that $E(X_1) = E(X_2) = 1.5$, $Var(X_1) = Var(X_2) = 0.25$, and the correlation coefficient between X₁ and X₂ is 0.5. Let D = 3X₁ - 2X₂,

- 1. The expected value of D?
- 2. The variance of D?

F. (15% with 5% each)

Suppose that the two-dimensional random variable (X, Y) has joint pdf

f(x, y) = kx(x - y) for 0 < x < 2, -x < y < x; f(x, y) = 0, elsewhere.

- 1. Evaluate the constant k.
- 2. Find the marginal pdf of X.
- 3. Find the marginal pdf of Y.

編號: 321

國立成功大學 104 學年度碩士班招生考試試題

系所組別:環境醫學研究所丙組 考試科目:統計學

考試日期:0212,節次:2

第2頁,共2頁

G. (20% with 10% each)

Suppose that the joint pdf of the two-dimensional random variable (X, Y) is given by $f(x, y) = x^2 + y^2$

- $\frac{xy}{2}$ for 0<x<1, 0<y<2; f(x, y) = 0, elsewhere. Compute the following.
 - 1. Pr(X > 0.5);
 - 2. Pr(Y < X).

H. (15% with 5% each)

Assume that birthweights are normally distributed with a mean of 3400 g and a standard deviation of 700 g.

- 1. Find the probability of a low-birthweight child, where low birthweight is defined as \leq 2500 g.
- Find the probability of a very low birthweight child, where very low birthweight is defined as ≤ 2000 g.
- 3. Assuming that successive deliveries by the same woman have the same probability of being low birthweight, what is the probability that a woman with exactly 3 deliveries will have 2 or more low birthweight deliveries?