系所組別：環境醫學研究所丙組
考試科目：統計學

第1買，共2頁

※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

A．（10\％with 5% each）

Prove that if A and B are independent events，
1． \bar{A} and B are independent．
2． \bar{A} and \bar{B} are independent．

B．（10\％）
Suppose that A and B are independent events associated with an experiment．If the probability that A or B occurs equals 0.6 ．The probability that A occurs equals 0.4 ．What is the probability that B occurs．

C．（10\％）
We have two urns， 1 and 2，each with two drawers．Urn 1 has a gold coin in one drawer and a silver coin in the other drawer．Urn 2 has a gold coin in each coin．One urn is chosen at random； then a drawer is chosen at random from the chosen urn．The coin found in this drawer is a gold coin．What is the probability that the coin came from urn 2 ？

D．（10\％）

If the random variable K is uniformiy distributed over $(0,5)$ ，what is the probability that the roots of the equation $4 \mathrm{x}^{2}+4 \mathrm{xK}+\mathrm{K}+2=0$ are real？

E．（10\％with 5\％each）
Assume that $\mathrm{E}\left(\mathrm{X}_{1}\right)=\mathrm{E}\left(\mathrm{X}_{2}\right)=1.5, \operatorname{Var}\left(\mathrm{X}_{1}\right)=\operatorname{Var}\left(\mathrm{X}_{2}\right)=0.25$ ，and the correlation coefficient between X_{1} and X_{2} is 0.5 ．Let $D=3 X_{1}-2 X_{2}$ ，

1．The expected value of D ？
2．The variance of D ？

F．（15\％with 5\％each）

Suppose that the two－dimensional random variable（ X, Y ）has joint pdf $f(x, y)=k x(x-y)$ for $0<x<2,-x<y<x ; f(x, y)=0$ ，elsewhere．

1．Evaluate the constant k ．
2．Find the marginal pdf of X ．
3．Find the marginal pdf of Y ．

系所組別：環境緊學研究所丙組

考試科目：统社學

G．（ 20% with 10% each）

Suppose that the joint pdf of the two－dimensional random variable (X, Y) is given by $f(x, y)=x^{2}+$ $\frac{x y}{3}$ for $0<x<1,0<y<2 ; f(x, y)=0$ ，elsewhere．Compute the following．

1． $\operatorname{Pr}(X>0.5)$ ；
2． $\operatorname{Pr}(Y<X)$ ．

H．（15\％with 5\％each）
Assume that birthweights are normally distributed with a mean of 3400 g and a standard deviation of 700 g ．
1．Find the probability of a low－birthweight child，where low birthweight is defined as $\leq 2500 \mathrm{~g}$ ．
2．Find the probability of a very low birthweight child，where very low birthweight is defined as \leq 2000 g ．
3．Assuming that successive deliveries by the same woman have the same probability of being low birthweight，what is the probability that a woman with exactly 3 deliveries will have 2 or more low birthweight deliveries？

