- 1. Define and explain the following terms. (30%)
 - (a) Chemiluminescence
 - (b) Selected ion monitoring
- (c) Precision vs. accuracy
- (d) Mobile phase vs. stationary phase
- (e) Monoisotopic mass vs. average mass
- (f) Calibration sensitivity vs. analytical sensitivity
- 2. Describe applications and working principles of the following devices. (30%)
 - (a) Electron multiplier with discrete dynodes
 - (b) Flame ionization detector
 - (c) Ion cyclotron resonance mass spectrometer
 - (d) Electrospray ionization source
- (e) Negative ion chemical ionization source
- (f) Diffusion pump
- 3. Explain: (20%)
 - (a) How is a standard addition method used to measure the concentration of the unknown solution?
 - (b) How does a reflectron time-of-flight mass spectrometer focus ions of the same mass to charge ratios but with different velocities?
- (c) Why can bromine atom-containing ions be easily identified in a mass spectrum?
- (d) An electron impact ionization source generally induces large amount of fragment ions from an analyte molecule. What analytical advantages are provided by such fragmentation?
- 4. Draw: (10%)
 - (a) The chemical structures for the stationary phases that are commonly used in GLC columns.
- (b) An energy diagram to describe how a fluorescence process occurs and a block diagram to explain how a fluorescence spectrometer works.
- 5. Derive the equation $N = 16 \text{ Rs}^2(\alpha/(\alpha-1))^2((1+k'_B)/k'_B)^2$ using the definitions of number of plates (N), resolution (Rs), selectivity factor (α), and retention factor (k'_B). (10%)