編號: 364

國立成功大學 105 學年度碩士班招生考試試題

系 所:口腔醫學研究所

考試科目:材料科學

考試日期:0228,節次:2

第1頁,共1頁

*	考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不	予計分。
1.	Please explain and compare (a) intrinsic semiconductor and (b) extrinsic semiconductor.	(10%)
2.	(a) Describe and explain Fick's first law, (b) Describe and explain Fick's second laws.	(10%)
3.	(a) Define engineering stress and engineer strain. (b) Compare the engineering stress and true	stress.
		(10%)
4.	Copper has an atomic radius of 0.128 nm, density of 8.89 g/cm ³ , and an atomic weight of 6	3.5 g/mol.
	Determine whether it has an BCC or FCC crystal structure.	(10%)
5.	Briefly explain (a) Miller indices (b) Lever rule (c) Hardness (d) Tempered Marte	ensite (e)
	Superconductivity.	(10%)
6.	Describe simple eutectic phase diagrams. On these diagrams label the various phase regi	ons. Label
	liquidus, solidus, and solvus lines.	(10%)
7.	Why a metal having small grains is stronger than one having large grains?	(10%)
8.	Explain the difference between resolved shear stress and critical resolved shear stress.	(10%)
9.	Please explain (a) graphite is conductive (b) diamond is not conductive.	(10%)
10.	If the cold-worked steel is preformed by the annealing treatment. What is the driving	force for
	recrystallization and grain growth?	(10%)